Acknowledgement
The authors would like to thank Iran University of Medical Sciences (IUMS), Tehran, Iran for their cooperation throughout the period of study.
References
- de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod 2010;25:1851-62. https://doi.org/10.1093/humrep/deq124
- Abolghasemi H, Aghaiipour M, Nikougoftar M, Amirizadeh N, Mohammadi MT, Rahmani S, et al. Leukoreduction in packed cells filtered by home-made. Sci J Iran Blood Transfus Organ 2009;6:13-20.
- Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014;28:14-38. https://doi.org/10.1016/j.rbmo.2013.08.011
- Zhang D, Ma C, Sun X, Xia H, Zhang W. S100P expression in response to sex steroids during the implantation window in human endometrium. Reprod Biol Endocrinol 2012;10:106.
- Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF-ET. Hum Reprod 2006;21:3036-43. https://doi.org/10.1093/humrep/del305
- Simur A, Ozdemir S, Acar H, Colakoglu MC, Gorkemli H, Balci O, et al. Repeated in vitro fertilization failure and its relation with thrombophilia. Gynecol Obstet Invest 2009;67:109-12. https://doi.org/10.1159/000165776
- Kovacs P. Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol 2014;12:124.
- Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril 2013;100:412-9. https://doi.org/10.1016/j.fertnstert.2013.04.021
- Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril 2010;94:535-42. https://doi.org/10.1016/j.fertnstert.2009.03.078
- Wishart DS. Proteomics and the human metabolome project. Expert Rev Proteomics 2007;4:333-5. https://doi.org/10.1586/14789450.4.3.333
- Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 2006;131:875-85. https://doi.org/10.1039/b602376m
- Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril 2001;76:1175-80. https://doi.org/10.1016/S0015-0282(01)02888-6
- Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 2004;19:2319-24. https://doi.org/10.1093/humrep/deh409
- Cortezzi SS, Cabral EC, Trevisan MG, Ferreira CR, Setti AS, Braga DP, et al. Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 2013;145:453-62. https://doi.org/10.1530/REP-12-0168
- Li X, Xu Y, Fu J, Zhang WB, Liu SY, Sun XX. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles. J Assist Reprod Genet 2015;32:1597-605. https://doi.org/10.1007/s10815-015-0578-z
- Lu JC, Huang YF, Lu NQ. WHO Laboratory Manual for the Examination and Processing of Human Semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue 2010;16:867-71.
- Govahi A, Amjadi F, Nasr-Esfahani MH, Raoufi E, Mehdizadeh M. Accompaniment of time-lapse parameters and cumulus cell RNA-sequencing in embryo evaluation. Reprod Sci 2022;29:395-409. https://doi.org/10.1007/s43032-021-00748-3
- Ovarian Stimulation TEGGO; Bosch E, Broer S, Griesinger G, Grynberg M, Humaidan P, et al. ESHRE guideline: ovarian stimulation for IVF/ICSI. Hum Reprod Open 2020;2020:hoaa009.
- Hakimpour S, Jelodar G, Shabani R, Pourheydar B, Ajdary M, Mehdizadeh M. Study of vitamin D3 formulation prepared by phytosolve technique and its effect on CTRP6 gene expression in PCOS model. J Drug Deliv Sci Technol 2022;73:103489.
- Drabkova P, Andrlova L, Kanďar R. An HPLC method for the determination of selected amino acids in human embryo culture medium. Biomed Chromatogr 2017;31:e3800.
- Lin TC, Yen JM, Gong KB, Hsu TT, Chen LR. IGF-1/IGFBP-1 increases blastocyst formation and total blastocyst cell number in mouse embryo culture and facilitates the establishment of a stem-cell line. BMC Cell Biol 2003;4:14.
- Zaraza J, Oropeza A, Velazquez MA, Korsawe K, Herrmann D, Carnwath JW, et al. Developmental competence and mRNA expression of preimplantation in vitro-produced embryos from prepubertal and postpubertal cattle and their relationship with apoptosis after intraovarian administration of IGF-1. Theriogenology 2010;74:75-89. https://doi.org/10.1016/j.theriogenology.2009.11.033
- Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012;8:e1002609.
- Agrogiannis GD, Sifakis S, Patsouris ES, Konstantinidou AE. Insulin-like growth factors in embryonic and fetal growth and skeletal development (review). Mol Med Rep 2014;10:579-84. https://doi.org/10.3892/mmr.2014.2258
- Xie M, McCoski SR, Johnson SE, Rhoads ML, Ealy AD. Combinatorial effects of epidermal growth factor, fibroblast growth factor 2 and insulin-like growth factor 1 on trophoblast cell proliferation and embryogenesis in cattle. Reprod Fertil Dev 2017;29:419-30. https://doi.org/10.1071/RD15226
- Vailes MT, McCoski SR, Wooldridge LK, Reese ST, Pohler KG, Roper DA, et al. Post-transfer outcomes in cultured bovine embryos supplemented with epidermal growth factor, fibroblast growth factor 2, and insulin-like growth factor 1. Theriogenology 2019;124:1-8. https://doi.org/10.1016/j.theriogenology.2018.09.023
- Irani M, Nasioudis D, Witkin SS, Gunnala V, Spandorfer SD. High serum IGF-1 levels are associated with pregnancy loss following frozen-thawed euploid embryo transfer cycles. J Reprod Immunol 2018;127:7-10. https://doi.org/10.1016/j.jri.2018.03.002
- Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev 2017;84:1027-38. https://doi.org/10.1002/mrd.22868
- Gott AL, Hardy K, Winston RM, Leese HJ. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod 1990;5:104-8. https://doi.org/10.1093/oxfordjournals.humrep.a137028
- Madr A, Cela A, Klejdus B, Pelcova M, Crha I, Zakova J, et al. Determination of pyruvate and lactate as potential biomarkers of embryo viability in assisted reproduction by capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015;36:1244-50. https://doi.org/10.1002/elps.201400487
- Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil 1993;99:87-95. https://doi.org/10.1530/jrf.0.0990087
- Pantaleon M, Ryan JP, Gil M, Kaye PL. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol Reprod 2001;64:1247-54. https://doi.org/10.1095/biolreprod64.4.1247
- Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U. Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev Cell 2020;53:9-26. https://doi.org/10.1016/j.devcel.2020.02.015
- Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012;79:742-56. https://doi.org/10.1002/mrd.22078
- Byers SL, Payson SJ, Taft RA. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 2006;65:1716-26. https://doi.org/10.1016/j.theriogenology.2005.09.016
- Ho Y, Doherty AS, Schultz RM. Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol Reprod Dev 1994;38:131-41. https://doi.org/10.1002/mrd.1080380203
- Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 1992;31:189-94. https://doi.org/10.1002/mrd.1080310305
- Lane M, Gardner DK. Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Mol Reprod Dev 2001;60:233-40. https://doi.org/10.1002/mrd.1083
- Herrick JR, Strauss KJ, Schneiderman A, Rawlins M, Stevens J, Schoolcraft WB, et al. The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans. Reprod Fertil Dev 2015;27:323-31. https://doi.org/10.1071/RD13268
- Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 1999;96:13807-12. https://doi.org/10.1073/pnas.96.24.13807
- Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod 1998;13:3441-8. https://doi.org/10.1093/humrep/13.12.3441
- Martin PM, Sutherland AE, Van Winkle LJ. Amino acid transport regulates blastocyst implantation. Biol Reprod 2003;69:1101-8. https://doi.org/10.1095/biolreprod.103.018010
- Huo P, Zhu Y, Liang C, Yao J, Le J, Qin L, et al. Non-invasive amino acid profiling of embryo culture medium using HPLC correlates with embryo implantation potential in women undergoing in vitro fertilization. Front Physiol 2020;11:405.