Acknowledgement
This work was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea (NRF-2018R1D-1A1B07046419 to Jaewang Lee).
References
- Infante A, Rodriguez CI. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res Ther 2018;9:244.
- Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006;1092:385-96. https://doi.org/10.1196/annals.1365.035
- Nefussi JR, Sautier JM, Nicolas V, Forest N. How osteoblasts become osteocytes: a decreasing matrix forming process. J Biol Buccale 1991;19:75-82.
- Yoon HJ, Seo CR, Kim M, Kim YJ, Song NJ, Jang WS, et al. Dichloromethane extracts of Sophora japonica L. stimulate osteoblast differentiation in mesenchymal stem cells. Nutr Res 2013;33:1053-62. https://doi.org/10.1016/j.nutres.2013.08.004
- Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019;51:1-8. https://doi.org/10.1038/s12276-019-0251-1
- Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O'Rear L, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 2009;27:1887-98. https://doi.org/10.1002/stem.103
- Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 2010;339:189-95. https://doi.org/10.1007/s00441-009-0832-8
- Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol 2020;8:601224.
- Black DM, Rosen CJ. Clinical practice: postmenopausal osteoporosis. N Engl J Med 2016;374:254-62. https://doi.org/10.1056/NEJMcp1513724
- Lewiecki EM. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 2011;7:631-8. https://doi.org/10.1038/nrrheum.2011.130
- Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 2013;8:136.
- Lerner UH, Kindstedt E, Lundberg P. The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 2019;46 Suppl 21:33-51. https://doi.org/10.1111/jcpe.13051
- Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 2014;142:155-70. https://doi.org/10.1016/j.jsbmb.2013.09.008
- Glaser DL, Kaplan FS. Osteoporosis: definition and clinical presentation. Spine (Phila Pa 1976) 1997;22(24 Suppl):12S-6S. https://doi.org/10.1097/00007632-199712151-00003
- Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 2012;4:61-76. https://doi.org/10.1177/1759720X11430858
- Camacho-Pereira J, Tarrago MG, Chini CC, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab 2016;23:1127-39. https://doi.org/10.1016/j.cmet.2016.05.006
- Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol 2020;8:246.
- Zhou CC, Yang X, Hua X, Liu J, Fan MB, Li GQ, et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol 2016;173:2352-68. https://doi.org/10.1111/bph.13513
- Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007;32:12-9. https://doi.org/10.1016/j.tibs.2006.11.006
- Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 2013;5:144-50. https://doi.org/10.18632/aging.100544
- He X, He J, Shi Y, Pi C, Yang Y, Sun Y, et al. Nicotinamide phosphoribosyltransferase (Nampt) may serve as the marker for osteoblast differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res 2017;352:45-52. https://doi.org/10.1016/j.yexcr.2017.01.021
- Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 2011;54:3083-92. https://doi.org/10.1007/s00125-011-2288-0
- Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 cells. Med Sci Monit 2018;24:2045-52. https://doi.org/10.12659/MSM.905703
- He S, Zhang H, Lu Y, Zhang Z, Zhang X, Zhou N, et al. Nampt promotes osteogenic differentiation and lipopolysaccharide-induced interleukin-6 secretion in osteoblastic MC3T3-E1 cells. Aging (Albany NY) 2021;13:5150-63. https://doi.org/10.18632/aging.202434
- Huang Y, Jia Z, Xu Y, Qin M, Feng S. Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways. Genet Mol Biol 2020;43:e20190153.
- Ishihata K, Seong CH, Kibe T, Nakazono K, Mardiyantoro F, Tada R, et al. Lipoteichoic acid and lipopolysaccharides are affected by p38 and inflammatory markers and modulate their promoting and inhibitory effects on osteogenic differentiation. Int J Mol Sci 2022;23:12633.
- Amamoto S, Yoshiga D, Tabe S, Kokabu S, Fujii W, Hikiji H, et al. Zoledronate and lipopolysaccharide suppress osteoblast differen tiation through downregulating phosphorylation of Smad in pre-osteoblastic MC3T3-E1 cells. J Oral Maxillofac Surg Medi Pathol 2022;34:472-9. https://doi.org/10.1016/j.ajoms.2022.01.007
- Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013;19:179-92. https://doi.org/10.1038/nm.3074
- Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, et al. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 2014;19:379-407. https://doi.org/10.2741/4214
- Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 2010;30:3071-85. https://doi.org/10.1128/MCB.01428-09
- Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 2009;24:12-21. https://doi.org/10.1359/jbmr.080901
- Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, et al. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022;36:e22502.
- Man X, Yang L, Liu S, Yang L, Li M, Fu Q. Arbutin promotes MC3T3-E1 mouse osteoblast precursor cell proliferation and differentiation via the Wnt/β-catenin signaling pathway. Mol Med Rep 2019;19:4637-44. https://doi.org/10.3892/mmr.2019.10125
- Izumiya M, Haniu M, Ueda K, Ishida H, Ma C, Ideta H, et al. Evaluation of MC3T3-E1 cell osteogenesis in different cell culture media. Int J Mol Sci 2021;22:7752.
- Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 2016;24:795-806. https://doi.org/10.1016/j.cmet.2016.09.013
- Wang X, Hu X, Yang Y, Takata T, Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res 2016;1643:1-9. https://doi.org/10.1016/j.brainres.2016.04.060
- Huang RX, Tao J. Nicotinamide mononucleotide attenuates glucocorticoid-induced osteogenic inhibition by regulating the SIRT1/PGC-1α signaling pathway. Mol Med Rep 2020;22:145-54. https://doi.org/10.3892/mmr.2020.11116
- Lu Z, Jiang L, Lesani P, Zhang W, Li N, Luo D, et al. Nicotinamide mononucleotide alleviates osteoblast senescence induction and promotes bone healing in osteoporotic mice. J Gerontol A Biol Sci Med Sci 2023;78:186-94. https://doi.org/10.1093/gerona/glac175
- Yu W, Xie CR, Chen FC, Cheng P, Yang L, Pan XY. LGR5 enhances the osteoblastic differentiation of MC3T3-E1 cells through the Wnt/β-catenin pathway. Exp Ther Med 2021;22:889.
- Huang W, Jin S, Yang W, Tian S, Meng C, Deng H, et al. Protective effect of Agrimonia pilosa polysaccharides on dexamethasone-treated MC3T3-E1 cells via Wnt/β-catenin pathway. J Cell Mol Med 2020;24:2169-77. https://doi.org/10.1111/jcmm.14868
- Liang H, Gao J, Zhang C, Li C, Wang Q, Fan J, et al. Nicotinamide mononucleotide alleviates aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome. Toxicol Appl Pharmacol 2019;362:20-7. https://doi.org/10.1016/j.taap.2018.10.006
- Amorati R, Pedulli GF, Cabrini L, Zambonin L, Landi L. Solvent and pH effects on the antioxidant activity of caffeic and other phenolic acids. J Agric Food Chem 2006;54:2932-7. https://doi.org/10.1021/jf053159+
- Zheng Z, He Y, Long L, Gan S, Chen S, Zhang M, et al. Involvement of PI3K/Akt signaling pathway in promoting osteogenesis on titanium implant surfaces modified with novel non-thermal atmospheric plasma. Front Bioeng Biotechnol 2022;10:975840.