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Objective: Some age-related testicular changes, such as Sertoli cell vacuolization and blood–testis barrier breakdown, reduce total sperm 
production and male fertility. Therefore, this study investigated the effect of vitamin E on restoring testicular function in aged mice. Sperm 
cryo-resistance was also assessed.
Methods: Twenty-eight 48-week-old male Naval Medical Research Institute mice were divided into four groups for a daily gavage of vitamin 
E: the control group received distilled water, while the three treatment groups were administered 100, 200, and 400 mg/kg, respectively, for 4 
weeks. Subsequently, semen analyses, DNA fragmentation index (DFI), and protamine deficiency tests were conducted. Testicular histology, 
tissue antioxidant enzyme activity, and gene expression levels were also assessed.
Results: The two higher dosages of vitamin E were associated with a higher sperm count, greater progressive motility, and improved sperm 
morphology (p<0.05). These benefits were also evident after sperm freezing (p<0.05). Although chromatin abnormalities increased following 
vitrification, the treatment groups showed better outcomes (p<0.05). The tubular diameter, epithelium height, and luminal diameters re-
mained unchanged with age. The tissue antioxidant capacity was greater in the groups receiving the high doses of vitamin E. Additionally, 
significant increases in inhibitor of DNA binding protein-4 (Id4) and GDNF family receptor alpha-1 (Gfra1) expression were observed in the 
higher vitamin E dosage groups, and promyelocytic leukemia zinc finger protein (Plzf) expression was notably present in the 400 mg/kg 
treatment group compared to the control group (p<0.05).
Conclusion: Antioxidant supplementation might enhance reproductive outcomes in aging males. The observed effects included improved 
sperm cryo-resistance, which is advantageous for future applications such as sperm freezing or fertility preservation.
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Introduction 

Recently, there has been a trend among working couples to delay 
childbearing [1]. This, coupled with declining fertility rates, has in-
creased the demand for reproductive technologies [2,3]. There was a 
misconception that men, unlike women, would maintain strong fer-
tility indefinitely [2]. While men do continue to produce sperm and 
maintain fertility potential throughout their lives, both the quantity 
and quality of sperm decline with age [1,4]. Previous studies have ex-
amined the age-related changes in spermatogonial stem cells (SSCs) 
and their microenvironment, revealing that a diminished capacity to 
support the stem cell niche—critical for self-renewal and mainte-



nance—may play a significant role in age-related male infertility [3]. 
One of the key indicators of aging is oxidative stress, which arises 

when there is an imbalance between the production of free radicals 
and the body's antioxidant defenses. As we age, oxidative stress be-
comes more prevalent, leading to oxidative damage to lipids, pro-
teins, DNA, and ultimately resulting in cell death [5]. 

In addition to the challenges associated with spermatogenesis in 
older men, these issues become particularly significant when such 
individuals require assisted reproductive technology and sperm 
cryopreservation. These procedures can lead to cellular damage and 
impaired sperm function. Sperm freezing has been a valuable meth-
od for the long-term storage of sperm cells and the preservation of 
male fertility, and it has been in widespread use since the 1970s [6]. 
However, it has been observed that the production of reactive oxy-
gen species (ROS) may increase, or antioxidant activity may decrease 
during the freeze-thaw cycle, which can result in sperm membrane 
lipid peroxidation [7,8]. Consequently, some researchers have inves-
tigated the potential benefits of antioxidant supplementation during 
the freezing process to protect sperm from oxidative DNA damage. 
Vitamin E, a hydrophobic antioxidant and peroxyl radical scavenger, 
is one such supplement that has been studied. It helps to halt the 
chain reaction of lipid peroxidation in the sperm plasma membrane 
and preserves the integrity of sperm DNA [9]. 

Although there have been some successes in sperm freezing fol-
lowing antioxidant supplementation, the ideal antioxidant treat-
ment method has yet to be fully identified. This is due to the wide 
range of antioxidant regimens and varying concentrations used in 
previous studies [10]. The trend of marrying later in life, postponing 
childbearing, the increased frequency of remarriage, and the longer 
life expectancy of men—who theoretically can father children 
throughout their lives—has led to age-related infertility becoming a 
significant issue for modern society. However, there is a notable lack 
of detailed studies on fertility preservation in older men for future 
use, even though sperm quantity and quality are known to decline 
with age. Therefore, further research is necessary to identify the ap-
propriate antioxidants, including dosage, combination, and method 
of administration, for human sperm cryopreservation to potentially 
improve the sperm recovery rate. 

We investigated the rehabilitation of spermatogenesis, as well as 
the maintenance and differentiation of SSCs in aged male mice treat-
ed with vitamin E. This was indirectly assessed by comparing sperm 
parameters, evaluating chromatin quality, examining testicular histo-
pathological changes, measuring tissue antioxidant capacity, and ana-
lyzing gene expression of SSC markers, including GDNF family recep-
tor alpha-1 (Gfra1), promyelocytic leukemia zinc finger protein (Plzf), 
and inhibitor of DNA binding protein-4 (ID4). Additionally, we will ex-
plore the impact of this antioxidant, administered as a food supple-

ment, on the resilience of mouse sperm to the freezing process.  

Methods

1. Ethical approval 
This study received approval from the Research Ethics Committee 

of Rafsanjan University of Medical Sciences, Rafsanjan, Iran (IR.RUMS.
AEC.1402.003). All protocols were carried out in accordance with the 
approved procedures outlined in the National Institutes of Health 
Guidelines for the Care and Use of Laboratory Animals (NIH Publica-
tions No. 8023, revised 1978). 

2. Animals and treatment 
Twenty-eight male Naval Medical Research Institute mice, 48 

weeks old and weighing 30 to 40 g, were divided into four groups of 
seven for this study. Throughout the experiment, the animals were 
maintained under standard conditions with a temperature of 22±2 
°C, a relative humidity of 60%, and a 12-hour light-dark cycle. They 
had ad libitum access to food and water, with plates provided by the 
Pars Dam Company of Iran. The four study groups were as follows: (1) 
the control group, which received distilled water by gavage daily 
without any drug administration; (2) a group that received 100 mg/
kg body weight (BW) of vitamin E by gavage for 4 weeks; (3) a group 
that received 200 mg/kg BW of vitamin E for the same duration; and 
(4) a group that received 400 mg/kg BW of vitamin E by gavage for 4 
weeks. These dosages were chosen based on the treatment doses 
reported in previous studies [11-14]. 

3. Sperm parameter evaluation 
At the end of the treatment period, which lasted 35 days (equiva-

lent to one cycle of spermatogenesis in mice) [15], the animal was 
euthanized. This was done after inducing deep anesthesia through 
an intraperitoneal injection of ketamine and xylazine. The testicular 
tissues and cauda epididymis were removed by surgery. One testis 
was preserved in 7% formalin for histological analysis using hema-
toxylin and eosin staining. Half of the contralateral testis was allocat-
ed for gene extraction, while the remaining portion was used for an-
tioxidant assays. Of the two cauda epididymides, one was designat-
ed for sperm analysis, and the other was prepared for sperm cryo-
preservation. 

For the conventional semen analysis, cauda epididymal tissue was 
incubated in a 100 µL drop of Ham's F-10 medium (Sigma), supple-
mented with 5% human serum albumin (HSA; LifeGlobal). Testicular 
tissues were gently disrupted using two fine needles. Following a 
10-minute incubation period, spermatozoa were collected from the 
surface of the drop. An embryologist then evaluated sperm concen-
tration, motility, and morphology. 
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Sperm analysis was conducted using a Neubauer counting cham-
ber (Marienfeld Equipment). The evaluation of sperm parameters ad-
hered to the standards established by the World Health Organization 
[16]. Sperm concentration was measured, and motility was classified 
into three categories: progressive (A and B), non-progressive (C), and 
immotile (D) spermatozoa. For assessing sperm cell morphology, 
Diff-Quik staining was employed, and the head, neck, mid-piece, and 
tail structures were examined under light microscopy at 100× mag-
nification (Figure 1). Various head abnormalities were identified, in-
cluding hammer-shaped, collapsed, and triangular heads (Figure 1A-
1C). Common tail defects observed were hairpin neck, proximal and 
distal bent tails (Figure 1E), as well as heavy-type cytoplasmic drop-
lets (CD) and light-type CDs (Figure 1F, 1G) [17,18]. 

4. Sperm freezing and thawing 
Sperm cryopreservation was performed in accordance with the 

protocol described by Nakagata [19], with some modifications. The 
cryoprotectant agents (CPAs) used were composed of 18% raffinose 
pentahydrate (1.8 g), 3% skim milk (0.3 g), and 100 mmol/L L-gluta-
mine. These components were dissolved in 10 mL of distilled water 
and incubated for 90  minutes at 30 °C in a water bath. Following in-
cubation, the solution was centrifuged at 10,000 rpm for 60 minutes. 
The supernatant was then removed, and the remaining liquid was 
filtered through a 0.2 µm filter. The prepared CPA was stored at room 
temperature until needed, in 1.5 mL aliquots within 2 mL cryotubes. 

The cauda epididymis was placed in 100 µL of CPA medium, which 
was then covered with mineral oil in a Petri dish. The cauda was 
punctured at several points using a fine needle syringe to facilitate 
the release of sperm into the freezing medium. After a 3-minute in-
terval, 10 µL of a cryoprotectant solution was combined with the 
sperm and added to 90 µL drops of human tubal fluid (HTF) solution 

Figure 1. Mouse epididymal sperm morphology (Diff-Quik staining). (A) Two sperm with normal morphology, (B) sperm with an abnormal 
head and neck junction, (C) sperm lacking a hook shape and with a bent head, (D) sperm with a distally bent tail and a cytoplasmic droplet, (E) 
sperm with an abnormal head and neck junction, a distally bent tail, and a coiled tail, (F) sperm with a heavy-type cytoplasmic droplet, and (G) 
sperm with a distally bent tail and a light-type cytoplasmic droplet (magnification ×1,000).

(Irvine Scientific). Sperm analysis was conducted using 10 µL of the 
HTF. Subsequently, plastic straws were utilized for sperm freezing. 
Both ends of each straw were sealed with a thermal sealer. The 
straws were placed in a 50 mL conical tube, which was then posi-
tioned on the surface of liquid nitrogen for 10 minutes. Following 
this, the tube was fully immersed in the nitrogen (Figure 2). 

For the thawing process, the straws were placed in a 37 °C water 
bath for 15 minutes. Upon removal, both ends of the straws were 
cut, and the warmed sperm suspension was transferred into 100 µL 
of HTF medium, which was then overlaid with mineral oil in a 60 mm 
Petri dish. The drops were incubated for 30 minutes in a 37 °C incu-
bator. Ten microliters of the suspension were then placed in a Neu-
bauer counting chamber for analysis of sperm parameters [7]. 

5. Sperm DNA fragmentation assessment 
The terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) assay was performed to evaluate sperm DNA fragmenta-
tion, utilizing the In-Situ Cell Death Detection Kit (Roche Diagnostics 
GmbH) in accordance with the manufacturer's instructions. Sperma-
tozoa that exhibited a spectrum of green fluorescence were consid-
ered TUNEL-positive [20]. 

6. Sperm chromatin assessment (protamine deficiency) 
Chromomycin A3 (CMA3) staining is a technique used to detect 

sperm protamine deficiency. To this end, sperm samples were 
washed twice with phosphate-buffered saline (PBS; Ca2+ and Mg2+-
free). Thin smears were prepared, immediately fixed in an ethanol:ac-
etone (1:1) solution (Merck), and then air-dried at room temperature 
for 30 minutes. Each slide was treated with 100 μL of CMA3 solution 
(Sigma-Aldrich) for 20 minutes in the dark and analyzed using fluo-
rescence microscopy [21]. Cells that exhibited bright yellow staining 
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(indicative of abnormal chromatin packaging) were classified as 
CMA3-positive, while those with yellowish-green staining (represent-
ing normal chromatin packaging) were classified as CMA3-negative. 

7. Testicular histology study 
Testicular histology was performed to determine whether vitamin 

E could mitigate age-related abnormalities in testicular structure. To 
this end, testicular sections of 5-μm thickness, spaced at 50-μm in-
tervals, were prepared and stained with hematoxylin and eosin [22]. 
Five sections from each of the four different groups were examined 
for histological analysis. The objectives of the stereological analysis 
included Sertoli cells, spermatogonia, primary spermatocytes, sper-
matids, and the diameter of seminiferous tubules, as well as the 
thickness of the germinal epithelium layer. These analyses were con-
ducted using an optical microscope (Olympus) at ×400 magnifica-
tion (Figure 3). 

The stereological study was conducted using Image J software 
(http://rsb.info.nih.gov/nihimage/). Tubular and luminal diameters 
were measured by determining the cross-sectional area of the tubule 
or lumen, followed by calculating the radius of an equivalent circle. 
An equivalent circle is defined as one having an area that matches 
the measured value. This approach is more precise than measuring 
two diameters of an oval-shaped lumen (Figure 4).  

In the same sections, the thickness of the spermatogenic epitheli-
um (SET) was measured. This measurement was taken as the dis-
tance between the basement membrane and the tubular lumen, 
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Figure 2. (A) Incubation of the cauda epididymis in cryoprotectant 
medium, (B) traumatization of the cauda epididymis with a fine 
needle, (C) holding the conical tube above the surface of the liquid 
nitrogen, and (D) immersion of the tube in the liquid nitrogen.

Figure 3. A cross-section of the seminiferous tubules from a normal 
mouse testis, showing a well-organized and intact epithelium. The 
seminiferous tubules have a well-defined lumen, and the germ cells 
are attached to the basement membrane: (A) ×4 magnification (B) 
×10 magnification, (C) seminiferous tubules at ×20 magnification. (D) 
The lumen contains cytoplasm, round spermatids, and elongated 
spermatids, (E) seminiferous tubules, basal membrane (BM), Leydig 
cells (LC), and seminiferous epithelium (SE) at ×40 magnification. (F) 
Spermatogonial stem cell (SSC), primary spermatocyte (PS), Sertoli 
cells (SC), round spermatid (RS), elongated spermatid (ES).

A BB

CC DD

EE FF

with an average of four measurements recorded at four quadrants of 
the tubule (90°, 180°, 270°, and 360°). 

Testicular histological changes in the germinal epithelium caused 
by aging include thickening of the basement membrane, increased 
tunica propria thickness, decreased tubular diameter, fibrosis, sclero-
sis, thinning of the SET, and eventual obliteration of the tubules [23]. 
In this study, we evaluated the seminiferous tubules' contours, the 
general appearance of the epithelial layer, the structure of the base-
ment membrane, and the condition of Sertoli and Leydig cells during 
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Figure 4. The tubular and luminal diameters were measured using the ImageJ software.

microscopic examination. 

8. Tissue antioxidant enzyme activity measurement 
To assess the antioxidant capacity of testis tissue, we measured the 

levels of malondialdehyde (MDA), superoxide dismutase (SOD), and 
glutathione peroxidase (GPx). For this purpose, the testicular tissue 
was finely minced and homogenized following the protocol provid-
ed by the kit (Zelbio). The samples were homogenized in ice-cold 
PBS (pH 4.7) using a homogenizer. The resulting suspension was 
then centrifuged at 6,000 rpm for 20 minutes at 4 °C. After centrifu-
gation, the supernatant was carefully collected and stored in sterile 
microtubes at –20 °C. Subsequently, the activities of the antioxidant 
enzymes SOD and GPx, as well as the concentration of MDA, were 
determined in the testis tissue of the various experimental groups 
using a microplate reader. 

9. Molecular analysis 
After the treatment period of 4 weeks, the testicular tissue was as-

sessed for the expression levels of the Gfra1, Id4, and Plzf genes us-
ing real-time polymerase chain reaction. Total RNA extraction and 
cDNA synthesis from the tissue samples were performed with the 
Pars Tous kit, following the manufacturer's recommended protocol 
(Mashhad). Five microliters of the synthesized cDNA were combined 
with SYBR Green master mix and the respective forward and reverse 
primers for the target genes. Gene expression was compared be-
tween groups after normalization to β-actin, which served as the 
housekeeping gene. Primers were designed with the aid of Primer3 
software (http://bioinfo.ut.ee/primer3/). 

10. Statistical analysis 
SPSS ver. 20 (IBM) was utilized for the analysis of the collected 

data. The data were presented as mean±standard deviation (n=7) 
for parametric variables, and as median (interquartile range) for 
non-parametric variables. Group comparisons were conducted using 
one-way analysis of variance (ANOVA) when the normality assump-
tion was met, which included sperm parameters, DNA fragmentation 
index (DFI), tissue antioxidant enzyme activities, and histological 
characterization. However, the Kruskal-Wallis test was employed in 
instances where the assumption of homogeneity of variance was 
not met, specifically for epithelium height and luminal diameter 
measurements. The paired-sample t-test was applied to compare 
sperm parameters before and after freezing. The chi-square test was 
used for categorical data. The statistical significance threshold was 
set at p≤0.05. 

11. Availability of data and materials 
Derived data supporting the findings of this study are available 

from the corresponding author on request.  

Results 

1. Sperm parameters 
The results of sperm parameters in the control and treatment 

groups (vitamin E) are presented in Table 1. All treatment groups ex-
hibited a higher sperm count than the control group (p<0.05), with 
the highest count observed at the highest dose of vitamin E (400 
mg/kg) compared to the lowest dose (100 mg/kg). Additionally, vita-
min E significantly increased progressive motility at doses of 200 and 
400 mg/kg (38.85%±18.77% and 37.14%±7.10%, respectively) com-
pared to the control group (17.57%±5.06%). Improved sperm mor-
phology was noted at the 400 mg/kg dose compared to the control 
group (p<0.05). However, no significant differences in sperm mor-
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Table 2. Mouse epididymal sperm parameters after freezing

Groups Sperm count Progressive motility (A+B) Non-progressive (C) Immotile sperm Morphology
Control 11.57 ± 4.31 8.57 ± 1.61 37.71 ± 13.86 48.28 ± 12.72 25.85 ± 7.17
  Paired-sample t-test 0.176 0.005 0.013 0.011 0.000
Vitamin E 100 mg/kg 21.14 ± 5.14 13.28 ± 8.01 45.57 ± 9.03 41.14 ± 13.30 35.14 ± 7.73
  Paired-sample t-test 0.779 0.035 0.126 0.145 0.024
Vitamin E 200 mg/kg 23.28 ± 7.43 24.42 ± 9.89 48.28 ± 11.32 27.28 ± 9.96 50.28 ± 6.96
  Paired-sample t-test 0.455 0.128 0.115 0.899 0.485
Vitamin E 400 mg/kg 25.57 ± 7.52 27.71 ± 6.96 43.14 ± 3.62 29.14 ± 8.11 47.71 ± 13.86
  Paired-sample t-test 0.467 0.115 0.089 0.702 0.182
p-valuea) 0.002 0.00 0.27 0.005 0.001

Values are presented as mean±standard deviation.
a)One-way analysis of variance and the post hoc Tukey test showed a significantly higher sperm count after freezing in all treatment groups than in the con-
trol group. There was a higher percentage of progressive motile sperm in the 200 and 400 mg/kg groups than in the control group. A higher percentage of 
immotile sperm was seen in the control group than in the 200 and 400 mg/kg treatment groups. A better morphological score was recorded in the 200 and 
400 mg/kg groups than in the control group, and the result was significant in the 200 mg/kg group compared to the 100 mg/kg group.

Table 1. Mouse epididymal sperm parameters before freezing

Groups Sperm count Progressive motility (A+B) Non-progressive (C) Immotile sperm Morphology
Control 15.00 ± 4.04 17.57 ± 5.06 54.42 ± 12.98 33.71 ± 11.07 41.42 ± 9.25
Vitamin E 100 mg/kg 21.71 ± 20.00 27.85 ± 12.48 40.00 ± 6.21 32.14 ± 35.00 50.42 ± 9.77
Vitamin E 200 mg/kg 25.50 ± 5.01 38.85 ± 18.77 32.42 ± 13.56 37.71 ± 10.60 55.28 ± 12.72
Vitamin E 400 mg/kg 27.42 ± 2.50 37.14 ± 7.10 36.28 ± 9.56 28.00 ± 4.96 57.71 ± 7.69
p-valuea) 0.00 0.01 0.008 0.51 0.028

Values are presented as mean±standard deviation.
a)One-way analysis of variance and the post hoc Tukey test showed a significantly higher sperm count in all treatment groups than in the control group, and 
in the 400 mg/kg group than in the 100 mg/kg group. There was also higher progressive motility and lower non-progressive sperm in the 200 and 400 mg/
kg groups than in the control group. Better morphology was recorded in the 400 mg/kg group than in the control group.

phology were observed between the 100 and 200 mg/kg doses 
when compared to the control group (p>0.05). 

The effects of oral supplementation with vitamin E on sperm pa-
rameters after cryopreservation are shown in Table 2. Sperm samples 
cryopreserved in the treatment groups exhibited a higher sperm 
count than those in the control group (p<0.05). Additionally, a signif-
icant difference was observed between the higher and lower doses 
of vitamin E (27.42±2.50 vs. 21.71±20.00, respectively). Apart from 
sperm count, no significant differences in sperm parameters were 
noted between the 100 mg/kg treatment group and the control 
group after freezing (p>0.05). The 200 and 400 mg/kg treatment 
groups demonstrated a higher number of progressively motile 
sperm than the control group (p<0.05). 

As shown in Table 2, the addition of vitamin E following sperm 
freezing resulted in a significantly higher percentage of normal 
sperm morphology at the two higher doses of the vitamin (200 and 
400 mg/kg) than in the control group (p<0.05). Furthermore, the 200 
mg/kg dose showed a greater protective effect than the 100 mg/kg 
dose (p<0.05). 

The results for the paired-samples t-test are presented in Table 2. 
There was a significant reduction in progressive motility and mor-
phology scores in both the control and the 100 mg/kg treatment 
groups (p<0.05). No significant differences were observed in the 
sperm parameters between the 200 and 400 mg/kg groups. 

2. Sperm DNA integrity 
To determine the impact of vitamin E treatment on sperm DNA in-

tegrity during cryopreservation, the total DFI of sperm was evaluated 
in all groups, both before and after the cryopreservation process. The 
results indicated no significant difference in mean DFI levels before 
freezing between the control and treatment groups (p<0.05). How-
ever, post-freezing results were significant, with higher DFI levels ob-
served in the control group compared to those treated with 200 and 
400 mg/kg of vitamin E (p>0.05) (Table 3). 

3. Sperm protamine deficiency 
The chromatin integrity results (CMA3+) indicated an equivalent 

level of protamine deficiency prior to freezing. However, post-freez-
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Table 3. DNA fragmentation and protamine deficiency, before and after freezing

Variable
DNA fragmentation Protamine deficiency

Before freezing After freezing Before freezing After freezing
Control 46.57 ± 13.01 63.00 ± 11.48 35.00 ± 5.53 48.00 ± 8.18
Vitamin E 100 mg/kg 39.57 ± 8.18 49.57 ± 12.60 28.00 ± 7.65 38.14 ± 7.98
Vitamin E 200 mg/kg 35.00 ± 8.56 40.57 ± 11.31 29.42 ± 11.47 35.57 ± 8.30
Vitamin E 400 mg/kg 35.14 ± 8.39 42.28 ± 8.09 25.42 ± 9.88 33.14 ± 8.02
p-valuea) 0.11 0.003 0.25 0.012
Values are presented as mean±standard deviation.
a)One-way analysis of variance did not show a significantly higher chromatin abnormality before freezing, but the results were significant after freezing in 
the control group than in the 200 and 400 mg/kg groups. A higher level of chromatin abnormalities was seen after freezing/thawing in all study groups 
(paired-sample t-test).

ing measurements revealed a significant difference. Notably, lower 
protamine deficiency was observed in the groups receiving the two 
higher doses of vitamin E compared to the control group (p<0.05). 
The paired-sample t-test revealed a reduction in the normal intact 
chromatin structure following vitrification across all groups. Con-
versely, significant chromatin damage was observed after freezing in 
the control groups, which exhibited a higher mean DFI and more 
positive CMA3 reactions (Table 3). 

The characteristics of the seminiferous tubules, the composition of 
different cells, and the common types of histological abnormalities 
are presented in Table 3. Notably, there was a significantly higher 
count of spermatogonial cells in the groups receiving the two higher 
doses of vitamin E compared to both the lower dose (100 mg) and 
the control groups. However, this increase was not significant for 
spermatocyte cells across the three treatment groups (p>0.05). Since 
the spermatid cell count did not follow a normal distribution, the 
Kruskal-Wallis test was employed. The results indicated a significantly 
higher number of spermatids in the groups treated with the high 
doses (200 and 400 mg/kg) compared to the lower dose and control 
groups (Mann-Whitney test, p<0.05). 

Table 4 presents the results of two common structural abnormali-
ties associated with aging: vacuolization and epithelial detachment. 
An irregular contour, characterized by the presence of immature ger-

minal epithelial cells in the lumen, was observed in one case within 
the control group. Both vacuolization and detachment were more 
prevalent in the control group, although the difference was not sta-
tistically significant (p>0.05). Only one instance of irregular contour 
was noted in the control group (Figure 5). The Pearson chi-square 
test, supplemented by the Fisher exact test when appropriate, re-
vealed no significant differences in the occurrence of these abnor-
malities between the control and the three treatment groups 
(p>0.05). 

As shown in Figure 6, there were no significant differences in tubu-
lar diameter (one-way ANOVA, post hoc Tukey), epithelial height, or 
luminal diameter (Kruskal-Wallis) among the study groups. 

4. Biochemical parameter evaluation 
The results for the measurement of tissue antioxidant enzyme ac-

tivities—specifically, SOD and GPx—and MDA content are present-
ed in Figure 7. As indicated, at the end of the 4th week of treatment, 
there was a significant increase in GPx activity in the 400 mg/kg 
treatment group compared to both the control group and the 100 
mg/kg treatment group. Additionally, SOD activity was significantly 
higher in the groups treated with 200 and 400 mg/kg than in the 
control group. 

At the end of treatment, the levels of MDA in the testicular tissues 

Table 4. Characteristics of seminiferous tubules, composition of different cells, and common types of histological deformities

Groups Spermatogonia Spermatocytes Spermatids Vacuoles (%) Detachment (%)
Irregular  
contours

Control 14.71 ± 5.73 26.85 ± 8.59 135.71 ± 10.99 57.1 28.6 14.3
Vitamin E 100 mg/kg 11.85 ± 6.41 40.42 ± 13.89 128.42 ± 11.75 28.6 14.3 0
Vitamin E 200 mg/kg 27.00 ± 9.05 47.57 ± 8.97 190.42 ± 34.40 28.6 0 0
Vitamin E 400 mg/kg 30.57 ± 8.34 45.42 ± 14.31 173.00 ± 31.54 0 14.3 0
p-valuea) 0.000 0.013 0.000 0.166 0.883 1.000

Values are presented as mean±standard deviation.
a)One-way analysis of variance and the post hoc Tukey test showed significantly higher spermatogonial cell counts in the 200 and 400 mg/kg groups than in 
the control and 100 mg/kg groups. The results were also significantly higher for spermatocytes in the two higher-dose groups than in the control group.
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Figure 5. Three common seminiferous abnormalities with age: 
(A) epithelium detachment and vacuoles (×100), (B) seminiferous 
epithelium disorganized, irregular contours, with germ cells located 
in abnormal positions. It is difficult to identify the different cell types 
of cells, in the epithelium. The seminiferous epithelium resembles a 
dense mass (×40).

A BB

Figure 6. Comparison of seminiferous tubule diameter, epithelium 
thickness, and lumen diameter in different groups. One-way analysis 
of variance and the post hoc Tukey test showed no significant 
differences in the tubular diameter; likewise, the epithelium height 
and luminal diameter did not show significant differences in the 
study groups (Kruskal-Wallis test, p>0.05).
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Figure 7. The results for tissue antioxidant capacity measurement (A: 
glutathione peroxidase [GPX]; B: superoxide dismutase [SOD] activities, 
and C: malonaldehyde [MDA] content). There was a significantly 
higher GPX activity in the 400 mg/kg compared to the control and 
100 mg/kg groups. Also, a higher SOD activity was shown in the two 
groups of 200 and 400 mg/kg compared to the control group. Lower 
MDA content was seen in the two higher dosages than the control 
group (one-way analysis of variance, post hoc, Tukey p<0.05).

of mice were significantly lower in the groups receiving higher doses 
of 200 and 400 mg/kg (16.9±3.21 and 18.15±4.13 nmol/mg protein, 
respectively) than in the control group (26.79±8.09 nmol/mg pro-
tein) (p<0.05). 

5. Gene expression 
After treatment, a higher level of expression of Id4 and Gfra1 was 

observed in the 200 mg/kg, and the results were significant in the 
200 and 400 mg/kg compared to the control group (p<0.05). The 
highest level of Plzf was seen in the 400 mg/kg treatment group, and 
the difference was significant only compared with the control group 
(p<0.05) (Figure 8). 
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Discussion 

In the present study, we found that dietary vitamin E supplemen-
tation in older mice was significantly associated with improved 
sperm cryo-resistance. This improvement was evident in sperm pa-
rameters, chromatin health, testicular tissue antioxidant activities, 
and gene expression. The gene expression pathways suggested a 
tendency to preserve the SSC pool in the treated male mice. Howev-
er, the data are insufficient to confirm changes in male sperm param-
eters with age due to a lack of longitudinal studies [1]. Some studies 
have reported decreases in semen volume [2,3], sperm motility 
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Figure 8. Gene expression pattern in the control and treatment 
groups. (A) Inhibitor of DNA binding protein-4 (ID4), (B) GDNF family 
receptor alpha-1 (Gfra1), and (C) promyelocytic leukemia zinc finger 
(PLZF) protein expressions.

found that vitamin E (400 mg/kg), when combined with vitamin C, 
could mitigate the toxic effects of sodium nitrate. It was also ob-
served that co-administration of 200 mg/kg vitamin E with mancoz-
eb reduced the harmful effects of mancozeb on sperm characteris-
tics and testicular parameters [12].  

One hypothesis that explains the age-related decline in tissue and 
organ function is the oxidative stress theory, which involves the ac-
cumulation of ROS [5]. Spermatozoa are especially vulnerable to the 
harmful effects of ROS due to their cell membranes being rich in un-
saturated fatty acids, which are susceptible to oxidation (lipid peroxi-
dation), and their limited cytoplasmic enzymes available for neutral-
izing ROS [25]. Consequently, the potential benefits of antioxidant 
therapy for male infertility have been extensively studied [26-28]. 

The results also demonstrated the efficacy of oral vitamin E sup-
plementation in sperm cryopreservation. Supplementation with 
higher doses of vitamin E (100, 200, and 400 mg/kg) resulted in in-
creased sperm counts, a greater number of progressively motile 
sperm, and improved sperm morphology, particularly at the 200 and 
400 mg/kg dosages. Therefore, the improvement of sperm parame-
ters observed with in vivo vitamin E supplementation led to the ex-
pectation of improved outcomes following sperm cryopreservation. 

Similar to our findings, researchers have demonstrated that live 
sperm count, sperm motility, and mitochondrial activity decreased 
following freezing, whereas lipid peroxidation experienced an in-
crease. They also found that the addition of vitamin E to the sperm 
cryopreservation mixture led to a decrease in lipid peroxidation and 
an enhancement in fertility rates [29]. 

An evaluation of sperm parameters before and after freezing, us-
ing the paired-sample t-test, also confirmed the role of antioxidant 
supplementation in enhancing sperm resistance, particularly in 
terms of chromatin health. Higher levels of protamine deficiency and 
DNA fragmentation were observed after the freeze-thaw process in 
the control group. The destructive effect of cryopreservation on 
sperm chromatin has been previously demonstrated [10,30]. 

It was observed that spermatogonial cell counts were significantly 
higher in the groups receiving the two higher doses of vitamin E 
compared to the control groups. The lower dose of vitamin E (100 
mg) did not prove to be as effective as the higher doses. Additionally, 
an increase in spermatid cells was noted in groups treated with high-
er doses of vitamin E. One histomorphological alteration observed in 
the testes is the disturbance of spermatogonia genesis [1]. SSCs in 
adult men undergo self-renewal and differentiation to maintain 
spermatogenesis throughout adulthood [11]. Studies have shown 
an age-related decrease in the number of germ cells and Sertoli cells 
[7]. Several underlying mechanisms have been proposed, with oxi-
dative stress being a prominent hypothesis described in the litera-
ture [31-33]. Other studies have attempted to reverse age-related 
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[2,4,7], sperm count [4,7,24], viability [8,9], morphology [2,3], and 
histopathological changes [7]. Our results indicated that among the 
various sperm parameters that change with age, vitamin E supple-
mentation, acting as an antioxidant, improved sperm count, motility, 
and morphology in the treatment groups compared to the control 
group. However, a higher dosage (400 mg/kg) was necessary to im-
prove morphology. In another study by Liu et al. [14], results demon-
strated better progressive motility and higher total antioxidant ca-
pacity in both seminal plasma and serum with 400 mg/kg of vitamin 
E compared to 200 mg/kg. Additionally, a study by Yarube et al. [13] 
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testicular changes in mice using antioxidants such as catalase [31], or 
vitamin E (hazelnut) [7]. 

Of all the histopathologic changes observed, three abnormalities 
were insignificantly more prevalent in the control group: vacuoles, 
epithelial detachments, and irregular contours. Similarly, another 
study identified age-related histologic alterations in the testis, in-
cluding vacuole formation in Sertoli cells at 12 months [22], epitheli-
um detachment [34], and immature germinal epithelial cells in the 
lumen [7]. Consistent with our findings, an additional study demon-
strated histopathological improvements following hazelnut supple-
mentation. 

The results showed that there were no significant differences in tu-
bular diameter, epithelium height, or luminal diameter between the 
control and treatment groups. Similarly, our findings revealed no 
change in the mean seminiferous tubule diameter following vitamin 
E treatment in aged mice [35]. Two possible hypotheses might ex-
plain this: firstly, the tubular and luminal diameters, as well as epithe-
lium height, may not undergo changes by the age of 12 months in 
mice. The minimal effect of vitamin E on testicular histology and 
morphology could be due to the fact that the imbalance between 
ROS production and antioxidant systems is not substantial enough 
to cause significant histological alterations by 12 months. Secondly, 
vitamin E may not be effective in reversing age-related alterations. 
Some studies have concluded that the basic structure of mouse sem-
iniferous tubules does not change with age up to 18 months [35]. 
This finding contrasts with another study that reported a reduction 
in seminiferous tubule volume with age [36].  

SOD is likely the first antioxidant agent that helps maintain the 
balance between the antioxidant and oxidant systems [11]. Within 
the endogenous antioxidant system, the enzymatic components in-
clude SOD, glutathione, and GPx, while the non-enzymatic compo-
nents consist of vitamin E, uric acid, and bilirubin [35,37]. However, 
one study indicated that the antioxidant capacity of the testis de-
creases with age [35]. In contrast, other studies have concluded that 
the age-related decline in male reproductive function is associated 
with an imbalance between ROS production and antioxidant sys-
tems [38]. Our results demonstrated increased SOD and GPx activi-
ties at the two higher dosages of vitamin E. This was also accompa-
nied by a significant decrease in MDA equivalent values, which are 
indicative of oxidation levels. These findings align with another study 
that reported an improvement in the seminal plasma oxidant-anti-
oxidant balance following hazelnut diet supplementation—a rich 
source of vitamin E and phenolic compounds—while simultaneous-
ly observing a reduction in MDA levels [7]. 

Several studies have investigated gene expression patterns in the 
reproductive system of aged male mice [39-41], with results that are 
sometimes contradictory. This inconsistency may stem from the se-

lection of different ages of mice. The impact of vitamin E on gonad 
gene expression has been the subject of a limited number of studies. 
One such study examined the effect of vitamin E supplementation 
on the CatSper 1 and CatSper 2 genes, finding that gene expression 
was upregulated following treatment with vitamin E [39]. Addition-
ally, long-term vitamin E treatment was found to increase the expres-
sion of genes related to oxidative stress in aged rats [42]. 

Plzf, which can function as both a transcriptional activator and a 
transcriptional repressor, regulates various signaling pathways, as 
well as differentiation and growth-regulatory processes [43]. This fac-
tor is expressed in numerous tissues, including the testes, and plays a 
critical role in maintaining the quiescence of SSCs [44]. It has been 
shown that Plzf naturally becomes upregulated with age, leading to 
the hypermaintenance of spermatogonial cells. However, it is unclear 
whether overexpression of Plzf negatively impacts the stemness of 
spermatogonial cells [45]. Inactivation of Plzf has been demonstrat-
ed to result in age-dependent germ cell loss, with testicular degener-
ation becoming inevitable due to reduced self-renewal capabilities 
of SSCs [46]. In this study, a higher level of Plzf gene expression cor-
relates with an increased number of spermatogonial cells in the vita-
min E-treated group. Additionally, elevated expression levels of Id4 
and Gfra1 were observed in the treatment groups. Previous research 
has indicated that the genetic loss of Gfra1 significantly reduced the 
self-renewal capacity of SSCs, and in vitro, a decrease in Gfra1 tran-
script levels adversely affected SSC proliferation. Gfra1-positive sin-
gle spermatogonia are considered the “actual stem cells” of the tes-
tes, essential for normal spermatogenesis [47]. It has been demon-
strated that the male germline stem cell pool is contained within the 
Id4+ spermatogonial population. Several cell populations are identi-
fied as assigning stem cell function (SSCs) using lineage tracing or 
transplantation approaches, such as Gfra1, paired box 7 (Pax7), 
Bmi1, or neurogenin 3 (Neurog3), but the Id4 population is the only 
type that acts throughout both tracing or transplantation [48]. Previ-
ous studies have demonstrated the significant role of vitamin E in 
promoting the proliferation of spermatogonial cells and primary 
spermatocytes, as well as in the production of spermatids and sper-
matozoa [49,50]. 

In summary, we found that although structural destruction was 
not prominent until 12 months, sperm parameters were reduced. 
Antioxidant supplementation for the improvement of aged male re-
production not only aids current fertility but also has implications for 
future applications, such as sperm freezing or fertility preservation. 
Furthermore, the effect of vitamin E on gene expression levels pres-
ents a promising approach for the regenerative efforts of aged testes 
in the future. 
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