DOI QR코드

DOI QR Code

Potential ameliorative effects of bilberry (Vaccinium myrtillus L.) fruit extract on cisplatin-induced reproductive damage in adult male albino rats

  • Fatma B. Mossa (Physiology Division, Zoology Department, Faculty of Science, Mansoura University) ;
  • Nadia Bakry (Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children's Hospital) ;
  • Mamdouh Rashad El-Sawi (Physiology Division, Zoology Department, Faculty of Science, Mansoura University)
  • Received : 2023.07.26
  • Accepted : 2023.12.19
  • Published : 2024.09.30

Abstract

Objective: Cisplatin (CP) is a widely used chemotherapeutic agent, but its severe side effects impact testicular function. We investigated the potential protective effects of bilberry extract against CP-induced testicular toxicity. Methods: Forty adult male albino rats were divided into four groups. Control animals received a single oral dose of 0.9% saline. Bilberry-treated rats received oral bilberry extract (200 mg/kg body weight [BW] dissolved in 1 mL of saline) daily for 10 consecutive days. CP-treated animals were administered a single intraperitoneal dose (7.5 mg/kg BW). Finally, a bilberry+CP group received oral bilberry extract (200 mg/kg BW) daily for 10 consecutive days, with one intraperitoneal dose of CP (7.5 mg/kg BW) on day 2. We assessed sperm count, motility, viability, and abnormalities, along with testis weight, testis weight-to-BW ratio, antioxidant activity, levels of oxidative stress markers (malondialdehyde [MDA] and hydrogen peroxide [H2O2]), sex hormones (follicle-stimulating hormone [FSH], luteinizing hormone [LH], and testosterone), and apoptotic and anti-apoptotic markers, and DNA damage. Testicular tissue underwent histopathological examination. Results: Among CP-treated rats, significantly lower values were observed for testis weight; testis weight-to-BW ratio; levels of FSH, LH, testosterone, superoxide dismutase, catalase, glutathione S-transferase, glutathione, and B-cell lymphoma 2; and sperm count, motility, and proportion of normal sperm. CP administration was associated with higher MDA, H2O2, p53, Bax, cytochrome c, caspase 9, and caspase 3 levels, along with elevated tail moment. However, bilberry extract administration significantly improved all altered parameters. Conclusion: Bilberry treatment demonstrated protective effects and reduced CP-induced testicular toxicity via antioxidant activity and cytoprotection.

Keywords

References

  1. Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 2010;39:8113-27.  https://doi.org/10.1039/c0dt00292e
  2. Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol 2013;85:274-86.  https://doi.org/10.1016/j.bcp.2012.10.012
  3. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364-78.  https://doi.org/10.1016/j.ejphar.2014.07.025
  4. Peres LA, da Cunha AD Jr. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol 2013;35:332-40.  https://doi.org/10.5935/0101-2800.20130052
  5. Trbojevic I, Ognjanovic B, Dordevic N, Markovic S, Stajn A, Gavric J, et al. Effects of cisplatin on lipid peroxidation and the glutathione redox status in the liver of male rats: the protective role of selenium. Arch Biol Sci 2010;62:75-82.  https://doi.org/10.2298/ABS1001075T
  6. Afsar T, Razak S, Khan MR, Almajwal A. Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats. BMC Cancer 2017;17:883. 
  7. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61:223-42.  https://doi.org/10.1016/j.etp.2008.09.003
  8. Pandir D, Kara O. Chemopreventive effect of bilberry (Vaccinium myrtillus) against cisplatin-induced oxidative stress and DNA damage as shown by the comet assay in peripheral blood of rats. Biologia 2014;69:811-6.  https://doi.org/10.2478/s11756-014-0371-y
  9. Soni KK, Kim HK, Choi BR, Karna KK, You JH, Cha JS, et al. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Devel Ther 2016;10:3959-68.  https://doi.org/10.2147/DDDT.S120014
  10. Tousson E, Hafez E, Masoud A, Hassan AA. Abrogation by curcumin on testicular toxicity induced by cisplatin in rats. J Cancer Res Treat 2014;2:64-8. 
  11. Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 2006;44:1173-83.  https://doi.org/10.1016/j.fct.2006.01.013
  12. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 2017;44:532-53.  https://doi.org/10.1159/000485089
  13. Chen W, Jia Z, Pan MH, Anandh Babu PV. Natural products for the prevention of oxidative stress-related diseases: mechanisms and strategies. Oxid Med Cell Longev 2016;2016:4628502. 
  14. Upton R. Bilberry fruit: Vaccinium myrtillus L.: standards of analysis, quality control, and therapeutics. American Herbal Pharmacopoeia; 2001. 
  15. Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, et al. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 2008;87:323-31.  https://doi.org/10.1093/ajcn/87.2.323
  16. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 2007;51:675-83.  https://doi.org/10.1002/mnfr.200700002
  17. Ashour OM, Elberry AA, Alahdal A, Al Mohamadi AM, Nagy AA, Abdel-Naim AB, et al. Protective effect of bilberry (Vaccinium myrtillus) against doxorubicin-induced oxidative cardiotoxicity in rats. Med Sci Monit 2011;17:BR110-5.  https://doi.org/10.12659/MSM.881711
  18. Pandir D, Kara O, Kara M. Protective effect of bilberry (Vaccinium myrtillus L.) on cisplatin induced ovarian damage in rat. Cytotechnology 2014;66:677-85.  https://doi.org/10.1007/s10616-013-9621-z
  19. Seed J, Chapin RE, Clegg ED, Dostal LA, Foote RH, Hurtt ME, et al. Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. ILSI Risk Science Institute Expert Working Group on Sperm Evaluation. Reprod Toxicol 1996;10:237-44.  https://doi.org/10.1016/0890-6238(96)00028-7
  20. Ciftci O, Ozdemir I, Aydin M, Beytur A. Beneficial effects of chrysin on the reproductive system of adult male rats. Andrologia 2012;44:181-6.  https://doi.org/10.1111/j.1439-0272.2010.01127.x
  21. Stocks J, Dormandy TL. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 1971;20:95-111.  https://doi.org/10.1111/j.1365-2141.1971.tb00790.x
  22. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882-8. 
  23. Chance B, Maehly AC. The assay of catalases and peroxidases. Methods Enzymol 1955;2:764-75.  https://doi.org/10.1016/S0076-6879(55)02300-8
  24. DeChatelet LR, McCall CE, McPhail LC, Johnston RB Jr. Superoxide dismutase activity in leukocytes. J Clin Invest 1974;53:1197-201.  https://doi.org/10.1172/JCI107659
  25. Bajpayee M, Dhawan A, Parmar D, Pandey AK, Mathur N, Seth PK. Gender-related differences in basal DNA damage in lymphocytes of a healthy Indian population using the alkaline Comet assay. Mutat Res 2002;520:83-91.  https://doi.org/10.1016/S1383-5718(02)00175-4
  26. Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Elsevier Health Sciences; 2008. p. 135-60. 
  27. Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Wiley; 2001. p. 760-83. 
  28. Sylla BS, Wild CP. A million Africans a year dying from cancer by 2030: what can cancer research and control offer to the continent? Int J Cancer 2012;130:245-50.  https://doi.org/10.1002/ijc.26333
  29. Lu QB, Zhang QR, Ou N, Wang CR, Warrington J. In vitro and in vivo studies of non-platinum-based halogenated compounds as potent antitumor agents for natural targeted chemotherapy of cancers. EBioMedicine 2015;2:544-53. https://doi.org/10.1016/j.ebiom.2015.04.011
  30. Soni KK, Zhang LT, You JH, Lee SW, Kim CY, Cui WS, et al. The effects of MOTILIPERM on cisplatin induced testicular toxicity in Sprague-Dawley rats. Cancer Cell Int 2015;15:121. 
  31. Burdulis D, Sarkinas A, Jasutiene I, Stackevicene E, Nikolajevas L, Janulis V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol Pharm 2009;66:399-408. 
  32. Neamtu AA, Szoke-Kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK, et al. Bilberry (Vaccinium myrtillus L.) extracts comparative analysis regarding their phytonutrient profiles, antioxidant capacity along with the in vivo rescue effects tested on a Drosophila melanogaster high-sugar diet model. Antioxidants (Basel) 2020;9:1067. 
  33. Benzie IF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal 2010;13:1575-91.  https://doi.org/10.1089/ars.2009.3024
  34. Yuce A, Atessahin A, Ceribasi AO, Aksakal M. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats. Basic Clin Pharmacol Toxicol 2007;101:345-9.  https://doi.org/10.1111/j.1742-7843.2007.00129.x
  35. Thireau J, Poisson D, Zhang BL, Gillet L, Le Pecheur M, Andres C, et al. Increased heart rate variability in mice overexpressing the Cu/Zn superoxide dismutase. Free Radic Biol Med 2008;45:396-403.  https://doi.org/10.1016/j.freeradbiomed.2008.04.020
  36. Anand H, Misro MM, Sharma SB, Prakash S. Protective effects of Eugenia jambolana extract versus N-acetyl cysteine against cisplatin-induced damage in rat testis. Andrologia 2015;47:194-208.  https://doi.org/10.1111/and.12247
  37. Dare A, Olaniyan OT, Salihu MA, Illesanmi KL. L-ergothioneine supplement protect testicular functions in cisplatin-treated Wistar rats. IOSR J Pharm Biol Sci 2019;14:6-13. 
  38. Elsayed A, Elkomy A, Alkafafy M, Elkammar R, El-Shafey A, Soliman A, et al. Testicular toxicity of cisplatin in rats: ameliorative effect of lycopene and N-acetylcysteine. Environ Sci Pollut Res Int 2022;29:24077-84.  https://doi.org/10.1007/s11356-021-17736-4
  39. Chandra AK, Chatterjee A, Ghosh R, Sarkar M. Vitamin E-supplementation protect chromium (VI)-induced spermatogenic and steroidogenic disorders in testicular tissues of rats. Food Chem Toxicol 2010;48:972-9.  https://doi.org/10.1016/j.fct.2010.01.008
  40. Kurt N, Turkeri ON, Suleyman B, Bakan N. The effect of taxifolin on high-dose-cisplatin-induced oxidative liver injury in rats. Adv Clin Exp Med 2021;30:1025-30.  https://doi.org/10.17219/acem/138318
  41. Silici S, Ekmekcioglu O, Eraslan G, Demirtas A. Antioxidative effect of royal jelly in cisplatin-induced testes damage. Urology 2009;74:545-51.  https://doi.org/10.1016/j.urology.2009.05.024
  42. Saad AA, Youssef MI, El-Shennawy LK. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: the protective effect of grape seed proanthocyanidin extract. Food Chem Toxicol 2009;47:1499-506.  https://doi.org/10.1016/j.fct.2009.03.043
  43. Reedijk J. Platinum anticancer coordination compounds: study of DNA binding inspires new drug design. Eur J Inorg Chem 2009;2009:1303-12.  https://doi.org/10.1002/ejic.200900054
  44. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 2017;11:IE01-5.  https://doi.org/10.7860/JCDR/2017/23927.9886
  45. Turk G, Atessahin A, Sonmez M, Ceribasi AO, Yuce A. Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril 2008;89(5 Suppl):1474-81.  https://doi.org/10.1016/j.fertnstert.2007.04.059
  46. Beytur A, Ciftci O, Oguz F, Oguzturk H, Yilmaz F. Montelukast attenuates side effects of cisplatin including testicular, spermatological, and hormonal damage in male rats. Cancer Chemother Pharmacol 2012;69:207-13.  https://doi.org/10.1007/s00280-011-1692-y
  47. Wang Y, Zhao L, Lu F, Yang X, Deng Q, Ji B, et al. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules 2015;20:22395-410.  https://doi.org/10.3390/molecules201219785
  48. Bao L, Yao XS, Yau CC, Tsi D, Chia CS, Nagai H, et al. Protective effects of bilberry (Vaccinium myrtillus L.) extract on restraint stress-induced liver damage in mice. J Agric Food Chem 2008;56:7803-7.  https://doi.org/10.1021/jf800728m
  49. Mesbahzadeh B, Hassanzadeh-Taheri M, Aliparast MS, Baniasadi P, Hosseini M. The protective effect of crocin on cisplatin-induced testicular impairment in rats. BMC Urol 2021;21:117. 
  50. Rauf N, Nawaz A, Ullah H, Ullah R, Nabi G, Ullah A, et al. Therapeutic effects of chitosan-embedded vitamin C, E nanoparticles against cisplatin-induced gametogenic and androgenic toxicity in adult male rats. Environ Sci Pollut Res Int 2021;28:56319-32.  https://doi.org/10.1007/s11356-021-14516-y
  51. Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A. Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod 2009;24:1717-25.  https://doi.org/10.1093/humrep/dep058
  52. Almeer RS, Abdel Moneim AE. Evaluation of the protective effect of olive leaf extract on cisplatin-induced testicular damage in rats. Oxid Med Cell Longev 2018;2018:8487248. 
  53. Eid AH, Abdelkader NF, Abd El-Raouf OM, Fawzy HM, ElSayeh BM, El-Denshary ES. Protective effect of L-carnitine against cisplatin-induced testicular toxicity in rats. Al-Azhar J Pharm Sci 2016;53:123-42.  https://doi.org/10.21608/ajps.2016.6891
  54. Amin A, Abraham C, Hamza AA, Abdalla ZA, Al-Shamsi SB, Harethi SS, et al. A standardized extract of Ginkgo biloba neutralizes cisplatin-mediated reproductive toxicity in rats. J Biomed Biotechnol 2012;2012:362049. 
  55. Fulco BC, Jung JT, Brum LO, Zborowski VA, Goulart TA, Nogueira CW. Similar hepatoprotective effectiveness of Diphenyl diselenide and Ebselen against cisplatin-induced disruption of metabolic homeostasis and redox balance in juvenile rats. Chem Biol Interact 2020;330:109234. 
  56. El-Gany A, Nagib RM, Bakry N, Bakry S. Amelioration of cisplatin induced testicular injury by different garlic preparations in experimental rat world. World J Pharm Pharm Sci 2016;5:160-81.
  57. Hamam ET, Awadalla A, Shokeir AA, Aboul-Naga AM. Zinc oxide nanoparticles attenuate prepubertal exposure to cisplatin-induced testicular toxicity and spermatogenesis impairment in rats. Toxicology 2022;468:153102. 
  58. Tumbas V, Canadanovic-Brunet J, Gille L, Dilas S, Cetkovic G. Superoxide anion radical scavenging activity of bilberry (Vaccinium myrtillus L.). J Berry Res 2010;1:13-23.  https://doi.org/10.3233/BR-2010-002
  59. Phan TT, Wang L, See P, Grayer RJ, Chan SY, Lee ST. Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing. Biol Pharm Bull 2001;24:1373-9.  https://doi.org/10.1248/bpb.24.1373
  60. Tsuda T, Ueno Y, Kojo H, Yoshikawa T, Osawa T. Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim Biophys Acta 2005;1733:137-47.  https://doi.org/10.1016/j.bbalip.2004.12.014
  61. Fallahzadeh AR, Rezaei Z, Rahimi HR, Barmak MJ, Sadeghi H, Mehrabi S, et al. Evaluation of the effect of pentoxifylline on cisplatin-induced testicular toxicity in rats. Toxicol Res 2017;33:255-63.  https://doi.org/10.5487/TR.2017.33.3.255
  62. Atessahin A, Karahan I, Turk G, Gur S, Yilmaz S, Ceribasi AO. Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol 2006;21:42-7.  https://doi.org/10.1016/j.reprotox.2005.05.003
  63. Hozayen WG. Effect of hesperidin and rutin on doxorubicin induced testicular toxicity in male rats. Int J Food Nutr Sci 2012;1:31-42. 
  64. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol 2018;16:87. 
  65. Meng H, Fu G, Shen J, Shen K, Xu Z, Wang Y, et al. Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxid Med Cell Longev 2017;2017:3140680. 
  66. Liu HT, Wang TE, Hsu YT, Chou CC, Huang KH, Hsu CC, et al. Nanoparticulated honokiol mitigates cisplatin-induced chronic kidney injury by maintaining mitochondria antioxidant capacity and reducing caspase 3-associated cellular apoptosis. Antioxidants (Basel) 2019;8:466. 
  67. Altindag F, Meydan I. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia 2021;53:e14189. 
  68. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005;74:739-89.  https://doi.org/10.1146/annurev.biochem.73.011303.074134
  69. Gonzalez VM, Fuertes MA, Alonso C, Perez JM. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001;59:657-63.  https://doi.org/10.1124/mol.59.4.657
  70. Rastogi RP, Sinha RP. Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 2019;8:155-81. 
  71. Tanida S, Mizoshita T, Ozeki K, Tsukamoto H, Kamiya T, Kataoka H, et al. Mechanisms of cisplatin-induced apoptosis and of cisplatin sensitivity: potential of BIN1 to act as a potent predictor of cisplatin sensitivity in gastric cancer treatment. Int J Surg Oncol 2012;2012:862879. 
  72. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016;1863:2977-92.  https://doi.org/10.1016/j.bbamcr.2016.09.012
  73. Sakkas D, Seli E, Manicardi GC, Nijs M, Ombelet W, Bizzaro D. The presence of abnormal spermatozoa in the ejaculate: did apoptosis fail? Hum Fertil (Camb) 2004;7:99-103.  https://doi.org/10.1080/14647270410001720464
  74. Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 2006;65:979-91.  https://doi.org/10.1016/j.theriogenology.2005.09.011
  75. Blasco MA. Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol 2003;82:441-6.  https://doi.org/10.1078/0171-9335-00335
  76. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry 2003;64:923-33. https://doi.org/10.1016/S0031-9422(03)00438-2