DOI QR코드

DOI QR Code

Comparative study of calcium carbonate deposition induced by microorganisms and plant ureases in fortified peat soils

  • Chao Wang (School of Architecture and Planning, Yunnan University) ;
  • Jianbin Xie (School of Architecture and Planning, Yunnan University) ;
  • Yinlei Sun (School of Architecture and Planning, Yunnan University) ;
  • Jianjun Li (School of Architecture and Planning, Yunnan University) ;
  • Jie Li (School of Architecture and Planning, Yunnan University) ;
  • Ronggu Jia (Yunnan Construction and Investment Holding Group No.1 Engineering Survey and Design Co., Ltd.)
  • Received : 2024.03.21
  • Accepted : 2024.06.25
  • Published : 2024.09.25

Abstract

For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a "nucleation site", so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

Keywords

References

  1. Ahenkorah, I., Rahman, M.M., Karim, M.R. and Beecham, S. (2021), "Enzyme induced calcium carbonate precipitation and its engineering application: A systematic review and meta-analysis", Constr. Build. Mater., 308, 125000. https://doi.org/10.1016/j.conbuildmat.2021.125000.
  2. Avramenko, M., Nakashima, K. and Kawasaki, S. (2022), "State-of-the-art review on engineering uses of calcium phosphate compounds: An eco-friendly approach for soil improvement", Materials, 15(19), 6878. https://doi.org/10.3390/ma15196878.
  3. Cai, S., Ruan, Y.F., Li, P.F., Zhu, Q. and Yan, M. (2022), "Shear characteristics and microstructural changes of peat soil", China Earthq. Eng. J., 44(6), 1366-1374. (In Chinese). https://doi.org/10.20000/j.1000-0844.20201209003.
  4. Chen, C., Wu, L., Perdjon, M., Huang, X.Y. and Peng, Y.X. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  5. Cui, M.J., Chu, J. and Lai, H.J. (2024), "Optimization of one-phase-low-pH enzyme-induced carbonate precipitation method for soil improvement", Acta Geotechnica, 19(3), 1611-1625. https://doi.org/10.1007/s11440-023-02175-x.
  6. Cui, M.J., Zhou, J.N., Lai, H.J., Zheng, J.J., Huang, M. and Zhang, Z.C. (2024), "Seawater-based soybean urease for calcareous sand biomineralization", Acta Geotechnica. https://doi.org/10.1007/s11440-024-02358-0.
  7. Dilrukshi, R.A.N., Nakashima, K. and Kawasaki, S. (2018), "Soil improvement using plant-derived urease-induced calcium carbonate precipitation", Soils Found., 58(4), 894-910. https://doi.org/10.1016/j.sandf.2018.04.003.
  8. Dong, B.W., Liu, S.Y., Yu, J., Xiao, Y., Cai, Y.Y. and Tu, Y.B. (2021), "Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP", Rock Soil Mech., 42(4), 1104-1114. (In Chinese). https://doi.org/10.16285/j.rsm.2020.1068.
  9. Dong, C.F., Huang, Y.L., Zhang, W.Y., Tang, X., Gu, Y.X. and Feng, Y.Z. (2023), "Behavioral evaluation on the engineering properties of lignin-stabilized loess: Reuse of renewable materials", Constr. Build. Mater., 369, 130599. https://doi.org/10.1016/j.conbuildmat.2023.130599.
  10. Dong, J. and Liu, X. (2022), "Application of improved enzyme induced calcium carbonate precipitation (EICP) technology in surface protection of earthen sites", J. Cultural Heritage, 54, 146-154. https://doi.org/10.1016/j.culher.2022.01.016.
  11. Gao, Q., Ge, J.H., Zhang, J., Ren, Z., Wu, D.H., Cheng, G.T. and Zhang, K. (2023), "Experimental study on the engineering characteristics of modified silt in the Yellow River alluvial plain", Constr. Build. Mater., 398, 132491. https://doi.org/10.1016/j.conbuildmat.2023.132491.
  12. Ghasemi, H., Hatam-Lee, S.M., Tirkolaei, H.K. and Yazdani, H. (2022), "Biocementation of soils of different surface chemistries via enzyme induced carbonate precipitation (EICP): An integrated laboratory and molecular dynamics study", Biophysical Chemistry, 284, 106793. https://doi.org/10.1016/j.bpc.2022.106793.
  13. Gitanjali, A., Jhuo, Y.S., Yeh, F.H. and Ge, L. (2024), "Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis", Constr. Build. Mater., 417, 135360. https://doi.org/10.1016/j.conbuildmat.2024.135360.
  14. Gowthaman, S., Iki, T., Ichinohe, A., Nakashima, K. and Kawasaki, S. (2022), "Feasibility of bacterialenzyme induced carbonate precipitation technology for stabilizing fine-grained slope soils", Front. Built Environ., 8, 1044598. https://doi.org/10.3389/fbuil.2022.1044598.
  15. Gui, Y., Fu, J., Hou, Y.J., Cao, J. and Zhou, Y.D. (2016), "Shear strength properties and mechanisms of peaty soil with high degree of decomposition in direct shear tests", J. Hohai University, (Natural Sciences), 44(5), 418-426. (In Chinese). https://doi.org/10.3876/j.issn.1000-1980.2016.05.007.
  16. He, J., Huang, A.G., Ji, J.F., Qu, S.Y. and Hang, L. (2023), "Enzyme induced carbonate precipitation with fibers for the improvement of clay soil slopes against rainfall and surface runoff erosions", Transport. Geotech., 42, 101074. https://doi.org/10.1016/j.trgeo.2023.101074.
  17. Iamchaturapatr, J., Piriyakul, K. and Petcherdchoo, A. (2022), "Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers", Case Studies Constr. Mater., 16, e00871. https://doi.org/10.1016/j.cscm.2022.e00871.
  18. Jiang, N.J., Yoshioka, H., Yamamoto, K. and Soga, K. (2016), "Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)", Ecol. Eng., 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073.
  19. Johnson, K.A. and Goody, R.S. (2011), "The original Michaelis constant: translation of the 1913 Michaelis-Menten paper", Biochemistry, 50(39), 8264-8269. https://doi.org/10.1021/bi201284u.
  20. Lai, H.J., Cui, M.J., Wu, S.F., Yang, Y. and Chu, J. (2021), "Retarding effect of concentration of cementation solution on biocementation of soil", Acta Geotechnica, 16(5), 1457-1472. https://doi.org/10.1007/s11440-021-01149-1.
  21. Li, H.D., Jiao, X.Y., Li, J., Su, M.X., Wu, S.Y. and Liu, Y. (2021), "Using microbe-induced calcite precipitation and enzyme-induced carbonate precipitation to cement slopes of earth ditches", J. Irrigation Drainage, 40(7), 59-65., (In Chinese). https://doi.org/10.13522/j.cnki.ggps.2020608.
  22. Liu, L.X., Gao, Y.F., Meng, H., Pan, Q.W., Wang, Z.B., Zhou, Y.D., Liu, B. and Cao, X.W. (2024), "Pore-scale, mechanical, and hydraulic properties of EICP-treated sand using crude legume ureases with different protein contents", Acta Geotechnica. https://doi.org/10.1007/s11440-023-02211-w.
  23. Liu, P., Shao, G.H. and Huang, R.P. (2019), "Study of the interactions between S. pasteurii and indigenous bacteria and the effect of these interactions on the MICP", Arabian J. Geosci., 12(23), 724. https://doi.org/10.1007/s12517-019-4840-z.
  24. Liu, Y., Gao, Y.F., Zhou, Y.D., Meng, H. and Li, C. (2024), "Evaluation of enzyme-induced carbonate precipitation using crude soybean urease during soil percolation", Acta Geotechnica, 19(3), 1571-1580. https://doi.org/10.1007/s11440-023-02040-x.
  25. Meng, H., Shu, S., Gao, Y., Yan, B.Y. and He, J. (2021). "Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement", Eng. Geol., 294, 106374. https://doi.org/10.1016/j.enggeo.2021.106374.
  26. Nam, I.H., Chon, C.M., Jung, K.Y., Choi, S.G., Choi, H. and Park, S.S. (2015), "Calcite precipitation by ureolytic plant (Canavalia ensiformis ) extracts as effective biomaterials", Ksce J. Civil Eng., 19(6), 1620-1625. https://doi.org/10.1007/s12205-014-0558-3.
  27. Oh, S.E., Kim, J.S., Maeng, S.K., Oh, S. and Chung, S.Y. (2024), "Influence of bacterial biomineralization conditions on the microstructural characteristics of cement mortar", J. Build. Eng., 91, 109455. https://doi.org/10.1016/j.jobe.2024.109455.
  28. Omoregie, A.I., Khoshdelnezamiha, G., Senian, N. and Ong, D.E.L. and Nissom, P.M. (2017), "Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials", Ecol. Eng., 109, 65-75. https://doi.org/10.1016/j.ecoleng.2017.09.012.
  29. Peng, J., He, X., Liu, Z.M., Feng, Q.P. and He, J. (2016), "Experimental research on influence of low temperature on MICP-treated soil", Chinese J. Geotech. Eng., 38(10), 1769-1774. (In Chinese). https://doi.org/10.11779/CJGE201610004.
  30. Peng, L.Y., Chen, X., Qi, J.L. and Zhu, T.Y. (2023), "Study on strength characteristics and strengthening mechanism of microbial reinforced silt" Mater. Reports, 1-12. (In Chinese). https://doi.org/10.11896/cldb.23010024.
  31. Radha, A.V., Forbes, T.Z., Killian, C.E., Gilbert, P.U.P.A. and Navrotsky, A. (2010), "Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate", Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16438-16443. https://doi.org/10.1073/pnas.1009959107.
  32. Ren, G.Z., Meng, M.Q., Fan, H.H., Wen, J.X., Zhang, J.W., Zhao, G.W., Yang, X.J., Sun, Z.C. and He, X. (2024), "Calcium ions and calcium carbonate: key regulators of the enzymatic mineralization for soil dispersivity control", Acta Geotechnica. https://doi.org/10.1007/s11440-024-02304-0.
  33. Shu, H., Yu, Q.B., Niu, C.C., Liu, J., Xia, W.T., Sun, X., Wang, Z.X. and Wang, Q. (2023), "Effect of dry-wet cycles on the mechanical properties of saline soil solidified with sulfur-free lignin and hydrophobic polymer", J. Build. Eng., 76, 107116. https://doi.org/10.1016/j.jobe.2023.107116.
  34. Song, J.Y., Sim, Y., Jang, J., Hong, W.T. and Yun, T.S. (2020), "Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression", Acta Geotechnica, 15(7), 1967-1980. https://doi.org/10.1007/s11440-019-00881-z.
  35. Sun, Y.L., Ma, S.T., Kuang, Y.W. and Xie, J.B. (2023), "Effect of mineral compositions on mechanical properties of granite residual soil", Case Studies Constr. Mater., 18, e02140. https://doi.org/10.1016/j.cscm.2023.e02140.
  36. Wang, Y.K., Jiang, R., Jiao, M.J., Cao, T.C. and Yu, X. (2023), "Macro and micro experimental study on solidification of Yellow River silt based on different biomineralization technologies", Environ. Earth Sci., 82(3), 86. https://doi.org/10.1007/s12665-023-10747-z.
  37. Wang, Z.Y., Zhao, X.Y., Chen, X., Cao, P., Cao, L. and Chen, W.J. (2023), "Mechanical properties and constitutive Mmodel of calcareous sand strengthened by MICP", J. Mar. Sci. Eng., 11(4), 819. https://doi.org/10.3390/jmse11040819.
  38. Xie, J.B., Yang, Y., Yang, L. and Sun, Y.L. (2024), "Effect of calcium carbonate deposition induced by microorganisms and plant urease on sand reinforcement", Polish J. Environ. Studies, 33(3), 2877-2889. https://doi.org/10.15244/pjoes/173166.
  39. Xu, K., Huang, M., Cui, M.J. and Li, S. (2023), "Retarding effect of cementation solution concentration on cementation ability of calcium carbonate crystal induced using crude soybean enzyme", Acta Geotechnica, 18(11), 6235-6251. https://doi.org/10.1007/s11440-023-01987-1.
  40. Yang, Y.J., Li, M.D., Tao, X.Q., Zhang, S.A., He, J., Zhu, L.P. and Wen, K.J. (2022), "The effect of nucleating agents on enzyme-induced carbonate precipitation and corresponding microscopic mechanisms", Materials, 15(17), 5814. https://doi.org/10.3390/ma15175814.
  41. Zhang, J.W., Wang, X.J., Li, B.B., Han, Y. and Bian, H.L. (2021), "Experimental study on silt reinforced by EICP-lignin technology", J. Civil Environ. Eng., 43(2), 201-202. (In Chinese). https://doi.org/10.11835/j.issn.2096-6717.2020.155.
  42. Zhang, J.W., Wang, X.J., Shi, L. and Yin, Y. (2022), "Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area", Constr. Build. Mater., 339, 127792. https://doi.org/10.1016/j.conbuildmat.2022.127792.
  43. Zhang, J.W., Yin, Y., Shi, W.P., Song, D.Q., Yu, L., Shi, L. and Han, Z.G. (2023), "Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling", Case Studies Constr. Mater., 18, e01802. https://doi.org/10.1016/j.cscm.2022.e01802.
  44. Zhang, X., Zhou, B., You, L.Y., Wu, Z.Y. and Wang, H.B. (2023), "Cementation anisotropy associated with microbially induced calcium-carbonate precipitation and its treatment effect on calcareous and quartz sands", Constr. Build. Mater., 395, 132237. https://doi.org/10.1016/j.conbuildmat.2023.132237.