DOI QR코드

DOI QR Code

Soil resistance estimation using smart instrumented dynamic penetrometers

  • Geunwoo Park (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Namsun Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yong-Hoon Byun (Department of Agricultural Civil Engineering, Kyungpook National University) ;
  • Sang Yeob Kim (Department of Fire and Disaster Prevention, Konkuk University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2024.05.21
  • Accepted : 2024.08.21
  • Published : 2024.07.25

Abstract

In-situ penetration tests using dynamic penetrometers are widely used for estimating soil resistance. Additionally, these dynamic penetrometers have been instrumented to improve tests accuracy. This paper introduces smart instrumented dynamic penetrometers and discusses experimental studies for various cases. An energy monitoring module was developed to enhance the dynamic penetration tests. The standard penetration test (SPT) and instrumented dynamic cone penetrometer (IDCP) tests were conducted using the energy monitoring module. Dynamic responses obtained by the energy monitoring module were used to calculate the transferred energies into the rod head and tip to correct the evaluation of ground strength. In addition, a crosshole-type dynamic penetrometer (CDP) was developed to measure the penetration index and shear wave velocity simultaneously to estimate the strength and stiffness of ground. The results of this study indicate that smart instrumented dynamic penetrometers may be effectively used to characterize the strength and stiffness of ground.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

References

  1. Amakye, S.Y., Abbey, S.J. and Booth, C.A. (2022), "Road pavement defect investigation using treated and untreated expansive road subgrade materials with varying plasticity index", Transport. Eng., 9, 100123. https://doi.org/10.1016/j.treng.2022.100123
  2. Anbazhagan, P., Parihar, A. and Rashmi, H.N. (2012), "Review of correlations between SPT N and shear modulus: a new correlation applicable to any region", Soil Dyn. Earthq. Eng., 36, 52-69. https://doi.org/10.1016/j.soildyn.2012.01.005
  3. Arifuzzaman and Anisuzzaman, M. (2022), "An initiative to correlate the SPT and CPT data for an alluvial deposit of Dhaka city", Int. J. Geo-Eng., 13(1), 5. https://doi.org/10.1186/s40703-021-00170-3
  4. Arosio, D. (2016), "Rock fracture characterization with GPR by means of deterministic deconvolution", J. Appl. Geophys., 126, 27-34. https://doi.org/10.1016/j.jappgeo.2016.01.006
  5. ASTM D4633 (2005), Standard test method for energy measurement for dynamic penetrometers; The American Society for Testing and Materials, West Conshohocken, USA.
  6. ASTM D6951 (2009), Standard Test Method for Use f The Dynamic Cone Penetrometer in Shallow Pavement Applications; The American Society for Testing and Materials, West Conshohocken, USA.
  7. Bolton Seed, H., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  8. Byun, Y.H. and Lee, J.S. (2013), "Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study", Geotech. Test. J., 36(4), 533-542. https://doi.org/10.1520/GTJ20120115
  9. Byun, Y.H., Kim, J.H. and Lee, J.S. (2013), "Cone penetrometer with a helical-type outer screw rod for evaluation of the subgrade condition", J. Transport. Eng., 139(2), 115-122. https://doi.org/10.1061/(ASCE)TE.1943-5436.00005
  10. Byun, Y.H., Yoon, H.K., Kim, Y.S., Hong, S.S. and Lee, J.S. (2014), "Active layer characterization by instrumented dynamic cone penetrometer in Ny-Alesund, Svalbard", Cold Regions Sci. Technol., 104, 45-53. https://doi.org/10.1016/j.coldregions.2014.04.003
  11. Byun, Y. H., Hong, W.T. and Lee, J.S. (2015), "Characterization of railway substructure using a hybrid cone penetrometer", Smart Struct. Syst., Int. J., 15(4), 1085-1101. http://dx.doi.org/10.12989/sss.2015.15.4.1085
  12. Chang, M., Kuo, C.P., Shau, S.H. and Hsu, R.E. (2011), "Comparison of SPT-N-based analysis methods in evaluation of liquefaction potential during the 1999 Chi-chi earthquake in Taiwan", Comput. Geotech., 38(3), 393-406. https://doi.org/10.1016/j.compgeo.2011.01.003
  13. Cubrinovski, M. and Ishihara, K. (1999), "Empirical correlation between SPT N-value and relative density for sandy soils", Soils Found., 39(5), 61-71. https://doi.org/10.3208/sandf.39.561
  14. George, V., Nageshwar Rao, C. and Shivashankar, R. (2009), "Effect of soil parameters on dynamic cone penetration indices of laterite sub-grade soils from India", Geotech. Geolog. Eng., 27, 585-593. https://doi.org/10.1007/s10706-008-9248-6
  15. Hong, W.T. and Lee, J.S. (2018), "Estimation of the Ground Cavity Configurations using Ground Penetrating Radar and Time Domain Reflectometry", Natural Hazards, 92(3), 1789-1807. https://doi.org/10.1007/s11069-018-3278-z
  16. Hong, W.T., Kim, S.Y., Lee, S.J. and Lee, J.S. (2017), "Strength and stiffness assessment of railway track substructures using crosshole-type dynamic cone penetrometer", Soil Dyn. Earthq. Eng., 100, 88-97. https://doi.org/10.1016/j.soildyn.2017.05.021
  17. Hong, W.T., Yu, J.D., Kim, S.Y. and Lee, J.S. (2019), "Dynamic cone penetrometer incorporated with time domain reflectometry (TDR) sensors for the evaluation of water contents in sandy soils", Sensors, 19(18), 3841. https://doi.org/10.3390/s19183841
  18. Hong, W.T., Kim, S.Y. and Lee, J.S. (2022), "Evaluation of driving energy transferred to split spoon sampler for accuracy improvement of standard penetration test", Measurement, 188, 110384. https://doi.org/10.1016/j.measurement.2021.110384
  19. Hunaidi, O. (1998), "Evolution-based genetic algorithms for analysis of non-destructive surface wave tests on pavements", NDT & e Int., 31(4), 273-280. https://doi.org/10.1016/S0963-8695(98)00007-3
  20. Hussein, A.A. and Alshkane, Y.M. (2018), "Prediction of CBR and MR of fine-grained soil using DCPI", Proceedings of the 4th International Engineering Conference on Developments in Civil & Computer Engineering, pp. 268-282.
  21. Ji, Y., Kim, B. and Kim, K. (2021), "Evaluation of liquefaction potentials based on shear wave velocities in Pohang City, South Korea", Int. J. Geo-Eng., 12, 1-10. https://doi.org/10.1186/s40703-020-00132-1
  22. Kim, S.Y., Lee, J.S., Kim, D.J. and Byun, Y.H. (2021), "Comparative study on estimation methods of dynamic resistance using dynamic cone penetrometer", Sensors, 21(9), 3085. https://doi.org/10.3390/s21093085
  23. Kim, S.Y., Lee, J.S., Tutumluer, E. and Byun, Y.H. (2022), "Dynamic response of free-end rod with consideration of wave frequency", Geomech. Eng., Int. J., 28(1), 25-33. https://doi.org/10.12989/gae.2022.28.1.025
  24. Kim, N., Lee, J.S., Park, G., Kang, S., Han, W. and Hong, W.T. (2023), "Strength and stiffness characterizations of geo-materials composing unpaved roads using LFWD, DCP, and CDP tests", Constr. Build. Mater., 402, 132592. https://doi.org/10.1016/j.conbuildmat.2023.132592
  25. Kim, S.Y., Kang, S., Park, G., Lee, D., Lim, Y. and Lee, J.S. (2024), "Detection of roadbed layers in mountainous area using down-up-crosshole penetrometer and ground penetrating radar", Measurement, 224, 113889. https://doi.org/10.1016/j.measurement.2023.113889
  26. Kovacs, W.D. (1979), "Velocity measurement of free-fall SPT hammer", J. Geotech. Eng. Div., 105(1), 1-10. https://doi.org/10.1061/AJGEB6.0000748
  27. Kumar, R., Bhargava, K. and Choudhury, D. (2016), "Estimation of engineering properties of soils from field SPT using random number generation", INAE Letters, 1, 77-84. https://doi.org/10.1007/s41403-016-0012-6
  28. Lee, J.S. and Byun, Y.H. (2020), "Instrumented cone penetrometer for dense layer characterization", Sensors, 20(20), 5782. https://doi.org/10.3390/s20205782
  29. Lee, J.S., Kim, S.Y., Hong, W.T. and Byun, Y.H. (2019), "Assessing subgrade strength using an instrumented dynamic cone penetrometer", Soils Found., 59(4), 930-941. https://doi.org/10.1016/j.sandf.2019.03.005
  30. Lee, J.S., Tutumluer, E. and Hong, W.T. (2021), "Stiffness evaluation of compacted geo-materials using crosshole-type dynamic cone penetrometer (CDP), rPLT, and LFWD", Constr. Build. Mater., 303, 124015. https://doi.org/10.1016/j.conbuildmat.2021.124015
  31. Likitlersuang, S., Takahashi, A. and Eab, K.H. (2017), "Modeling of root-reinforced soil slope under rainfall condition", Eng. J., 21(3), 123-132. https://doi.org/10.4186/ej.2017.21.3.123
  32. Lukiantchuki, J.A., Esquivel, E.R. and Bernardes, G.D.P. (2011), "Interpretation of force and acceleration signals during hammer impact in SPT tests", Proceedings of 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada.
  33. Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  34. Mujtaba, H., Farooq, K., Sivakugan, N. and Das, B.M. (2018), "Evaluation of relative density and friction angle based on SPT-N values", KSCE J. Civil Eng., 22, 572-581. https://doi.org/10.1007/s12205-017-1899-5
  35. Nazarian, S. (1984), "In situ shear wave velocities from spectral analysis of surface wave", Proceedings of 8th Conference on Earthquake Engineering, San Francisco, CA, USA.
  36. Park, G., Kim, N., Hong, W.T. and Lee, J.S. (2022), "Rod effects on transferred energy into SPT sampler using smart measurement system", Smart Struct. Syst., Int. J., 30(2), 159-172. https://doi.org/10.12989/sss.2022.30.2.159
  37. Park, G., Kim, N., Kang, S., Kim, S.Y., Yoo, C. and Lee, J.S. (2023a), "Instrumented dynamic cone penetrometer incorporated with time domain reflectometry", Measurement, 206, 112337. https://doi.org/10.1016/j.measurement.2022.112337
  38. Park, G., Lee, J.S., Kim, N., Lee, D. and Kim, S.Y. (2023b), "Effects of weight and drop height of hammer on dynamic cone penetration test in loose layer", Measurement, 218, 113198. https://doi.org/10.1016/j.measurement.2023.113198
  39. Park, G., Lee, J.S., Kim, N. and Kim, S.Y. (2024), "Hammer weight and dropping height effects on dynamic response in densely packed geo-materials", Transport. Geotech., 44, 101170. https://doi.org/10.1016/j.trgeo.2023.101170
  40. Patel, M.A., Patel, H.S. and Dadhich, G. (2013), "Prediction of subgrade strength parameters from dynamic cone penetrometer index, modified liquid limit and moisture content", Procedia-Social Behav. Sci., 104, 245-254. https://doi.org/10.1016/j.sbspro.2013.11.117
  41. Rosyidi, S.A.P., Ismail, M.A., Samsudin, A.R., Taha, M.R., Rafek, A.G. and Nayan, K.A.M. (2005), "In Situ Determination of Layer Thickness And Elastic Moduli Of Asphalt Pavement Systems By Spectral Analysis Of Surface Waves (Sasw) Method", Semesta Teknika, 8(2), 159-171. https://doi.org/10.18196/st.v8i2.904
  42. Sagar, C.P., Badiger, M., Mamatha, K.H. and Dinesh, S.V. (2022), "Prediction of CBR using dynamic cone penetrometer index", Materials Today: Proceedings, 60, 223-228. https://doi.org/10.1016/j.matpr.2021.12.467
  43. Sakib, S., Islam, M.A. and Hossain, M.S. (2022), "Assessment of the Seasonal and Spatial Variation in Shear Strength of High Plasticity Clay on Highway Slopes Using DCP Tests", In: Geo-Congress 2022, pp. 524-533. https://doi.org/10.1061/9780784484036.05
  44. Scala, A.J. (1956), "Simple methods of flexible pavement design using cone penetrometers", New Zealand Eng., 11(2), 34-44.
  45. Seed, B.H., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  46. Singh, D., Jha, J.N. and Gill, K.S. (2017), "Effect of field moisture content on penetration index value of dynamic cone penetrometer in alluvial soil subgrades", Int. J. Eng. Sci. Res. Technol., 6(7), 327-333.
  47. Sjoblom, D., Bischoff, J. and Cox, K. (2002), "SPT Energy Measurements with the PDA", Proceedings of the 2nd International Conference on the Application of Geophysicals and NDT Methodologies to Transportation Facilities and Infrastructure, Los Angeles, CA, USA, April.
  48. Tsuchida, T., Athapaththu, A.M.R.G., Kano, S. and Suga, K. (2011), "Estimation of in-situ shear strength parameters of weathered granitic (Masado) slopes using lightweight dynamic cone penetrometer", Soils Found., 51(3), 497-512. https://doi.org/10.3208/sandf.51.497