Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A2C2012113).
References
- Abdi, Y. (2024), "Investigation of the strength behavior and failure modes of layered sedimentary rocks under Brazilian test conditions", Int. J. Geo-Eng., 15(1), 6. https://doi.org/10.1186/s40703-024-00208-2
- Al-Swaidani, A.M., Meziab, A., Khwies, W.T., Al-Bali, M. and Lala, T. (2024), "Building MLR, ANN and FL models to predict the strength of problematic clayey soil stabilized with a combination of nano lime and nano pozzolan of natural sources for pavement construction", Int. J. Geo-Eng., 15(1), 2. https://doi.org/10.1186/s40703-023-00201-1
- Bang, H., Yu, B. and Jeon, H. (2023), "Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors", Smart Struct. Syst., Int. J., 32(2), 111-121. https://doi.org/10.12989/sss.2023.32.2.111
- Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J. and Wara, M. (2021), "The changing risk and burden of wildfire in the United States", Proceedings of the National Academy of Sciences, 118(2), e2011048118. https://doi.org/10.1073/pnas.2011048118
- Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002), "SMOTE: synthetic minority over-sampling technique", J. Artif. Intell. Res., 16, 321-357. https://doi.org/10.1613/jair.953
- Deeming, J.E. (1972), National fire-danger rating system; Rocky Mountain Forest and Range Experiment Station, Forest Service, USA.
- Fosberg, M.A. (1981), Weather in wildland fire management: the fire weather index.
- Gill, A.M., Stephens, S.L. and Cary, G.J. (2013), "The worldwide "wildfire" problem", Ecolog. Applicat., 23(2), 438-454. https://doi.org/10.1890/10-2213.1
- GM, B. (1959), "Combustion of forest fuels", In: Forest fire: control and use, pp. 61-89.
- Han, H., Wang, W.-Y. and Mao, B.-H. (2005), "BorderlineSMOTE: a new over-sampling method in imbalanced data sets learning", In: International Conference on Intelligent Computing. https://doi.org/10.1007/11538059_91
- Kim, S. and Yoon, H.-K. (2023), "Application of classification coupled with PCA and SMOTE, for obtaining safety factor of landslide based on HRA", Bull. Eng. Geol. Environ., 82(10), 381. https://doi.org/10.1007/s10064-023-03403-0
- Lee, J.S., Park, J., Kim, J. and Yoon, H.K. (2022), "Study of oversampling algorithms for soil classifications by field velocity resistivity probe", Geomech. Eng., Int. J., 30(3), 247-258. https://doi.org/10.12989/gae.2022.30.3.247
- Li, W., Zhao, W., Yang, M., Hong, N. and Du, Y. (2023a), "Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model", Smart Struct. Syst., Int. J., 31(5), 469-483. https://doi.org/10.12989/sss.2023.31.5.469
- Li, Y.-F., He, W.-Y., Ren, W.-X., Liu, G. and Sun, H.-P. (2023b), "Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network", Smart Struct. Syst., Int. J., 32(5), 297-308. https://doi.org/10.12989/sss.2023.32.5.297
- Min, D.-H., Kim, Y., Kim, S. and Yoon, H.-K. (2023), "Strategy of oversampling geotechnical parameters through geostatistical, SMOTE, and CTGAN methods for assessing susceptibility of landslide", Landslides, 1-17. https://doi.org/10.1007/s10346-023-02166-9
- Park, J., Lee, J.S. and Yoon, H.K. (2023), "Geoacoustic and geophysical data-driven seafloor sediment classification through machine learning algorithms with property-centered oversampling techniques", Comput.-Aided Civil Infrastruct. Eng., 39(14), 2105-2121. https://doi.org/10.1111/mice.13126
- Peng, X., Zhou, K., Duan, B., Zhong, X., Zhao, C. and Zhang, T. (2023), "A fast and simplified crack width quantification method via deep Q learning", Smart Struct. Syst., Int. J., 32(4), 219-233. https://doi.org/10.12989/sss.2023.32.4.219
- Rothermel, R.C. (1972), A mathematical model for predicting fire spread in wildland fuels; Intermountain Forest & Range Experiment Station, Forest Service, USA.
- Samadi, H., Hassanpour, J. and Rostami, J. (2023), "Prediction of earth pressure balance for EPB-TBM using machine learning algorithms", Int. J. Geo-Eng., 14(1), 21. https://doi.org/10.1186/s40703-023-00198-7
- Simard, A.J. (1968), The moisture content of forest fuels; University of California Oakland, CA, USA.
- Suh, H.S. (2024), "Evolution of anisotropic capillarity in unsaturated granular media within the pendular regime", Int. J. Geo-Eng., 15(1), 10. https://doi.org/10.1186/s40703-024-00211-7
- Tymstra, C., Stocks, B.J., Cai, X. and Flannigan, M.D. (2020), "Wildfire management in Canada: Review, challenges and opportunities", Progress Disaster Sci., 5, 100045. https://doi.org/10.1016/j.pdisas.2019.100045
- Zhu, H., Li, Z., Huang, M., Ji, P., Huang, H. and Zhang, Q. (2023), "Automatic assessment of post-earthquake buildings based on multi-task deep learning with auxiliary tasks", Smart Struct. Syst., Int. J., 31(4), 383-392. https://doi.org/10.12989/sss.2023.31.4.383