DOI QR코드

DOI QR Code

A study on transmission line configuration for structural health monitoring using electromagnetic waves

  • Dongsoo Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Dong-Ju Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jinwook Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sang Yeob Kim (Department of Fire and Disaster Prevention, Konkuk University)
  • 투고 : 2024.05.17
  • 심사 : 2024.08.13
  • 발행 : 2024.07.25

초록

Structural health monitoring (SHM) of concrete structures is necessary because structural safety is directly linked to life safety. This study proposes a transmission line configuration for SHM based on time domain reflectometry (TDR). For this purpose, six transmission lines consisting of electrical wires, rebars, and joints were prepared. The TDR waveforms were measured and analyzed in air and concrete using six transmission lines to select the most suitable configuration. A two-line wire with joints was selected as the optimal transmission line for SHM because it exhibited the highest sensitivity among the configurations. Experiments to apply SHM were performed on defective concrete blocks containing an optimal transmission line. The results showed that the defect locations in concrete were precisely investigated using TDR waveform analysis. The distances estimated from the TDR waveform were similar to the measured distances for the locations of the defects and joints in the concrete blocks. This study suggests that a transmission line consisting of two-line wires and joints may be an effective non-destructive evaluation tool for assessing the structural health of concrete.

키워드

과제정보

This work was supported by the Technology Innovation Program (P0024559, AI based Safety Assessment and Management System for Concrete Structures) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

참고문헌

  1. Armaghani, J.M., Larsen, T.J. and Romano, D.C. (1992), "Aspects of concrete strength and durability", Transport. Res. Rec., (1335).
  2. ASTM C42 (2017), Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete; ASTM International, West Conshohocken, PA, USA.
  3. ASTM C803 (2017), Standard Test Method for Penetration Resistance of Hardened Concrete; ASTM International, West Conshohocken, PA, USA.
  4. Babor, D., Plian, D. and Judele, L. (2009), "Environmental impact of concrete", Buletinul Institutului Politehnic din lasi, Sectia Constructii, Arhitectura., 55(4), 27.
  5. Barrow, W. (1936), "Transmission of electromagnetic waves in hollow tubes of metal", Proc. Inst. Radio Eng., 24(10), 1298-1328. http://doi.org/10.1109/JRPROC.1936.227357
  6. Chai, H.-Y., Phoon, K.-K. and Zhang, D.-J. (2010), "Effects of the source on wave propagation in pile integrity testing", J. Geotech Geoenviron. Eng., 136(9), 1200-1208. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000272
  7. Dalton, F., Herkelrath, W., Rawlins, D. and Rhoades, J. (1984), "Time-domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe", Sci., 224(4652), 989-990. http://doi.org/ 10.1126/science.224.4652.989
  8. Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
  9. Farrar, C.R., Doebling, S.W. and Nix, D.A. (2001), "Vibration-based structural damage identification", Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 359(1778), 131-149. https://doi.org/10.1098/rsta.2000.0717
  10. Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cem. Concrete Compos., 21(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3
  11. Guemes, A., Fernandez-Lopez, A., Pozo, A.R. and Sierra-Perez, J. (2020), "Structural health monitoring for advanced composite structures: a review", J. Compos. Sci., 4(1), 13. https://doi.org/10.3390/jcs4010013
  12. Hoang, N.Q., Kim, S.Y. and Lee, J.-S. (2022), "Compressibility, stiffness and electrical resistivity characteristics of sand-diatom mixtures", Geotechnique, 72(12), 1068-1081. https://doi.org/10.1680/jgeot.20.P.136
  13. Jiao, S., Cheng, L., Li, X., Li, P. and Ding, H. (2016), "Monitoring fatigue cracks of a metal structure using an eddy current sensor", EURASIP J. Wirel. Commun. Netw., 2016, 1-14. https://doi.org/10.1186/s13638-016-0689-y
  14. Kim, S.Y., Hong, W.-T., Hong, S.S., Baek, Y. and Lee, J.-S. (2016), "Unfrozen water content and unconfined compressive strength of frozen soils according to degree of saturations and silt fractions", J. Korean Geotech. Soc., 32(12), 59-67. https://doi.org/10.7843/kgs.2016.32.12.45
  15. Kim, S.Y., Kim, Y. and Lee, J.-S. (2021a), "Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials", Constr. Build. Mater., 266, 120912. https://doi.org/10.1016/j.conbuildmat.2020.120912
  16. Kim, S.Y., Park, J. and Lee, J.-S. (2021b), "Coarse-fine mixtures subjected to repetitive Ko loading: Effects of fines fraction, particle shape, and size ratio", Powder Technol., 377, 575-584. https://doi.org/10.1016/j.powtec.2020.09.017
  17. Kim, S.Y., Chun, J.K., Yeo, J.Y. and Lee, J.-S. (2023a), "Estimation of soil porosity in mine tailing using parameters from instrumented oedometer test", Eng. Geol., 317, 107065. https://doi.org/10.1016/j.enggeo.2023.107065
  18. Kim, S.Y., Kwon, D.Y., Jang, A., Ju, Y.K., Lee, J.-S. and Hong, S. (2023b), "A review of UAV integration in forensic civil engineering: From sensor technologies to geotechnical, structural and water infrastructure applications", Measurement, 224, 113886. https://doi.org/10.1016/j.measurement.2023.113886
  19. Kong, S.-M., Oh, D.-W., Lee, S.-Y., Jung, H.-S. and Lee, Y.-J. (2021), "Analysis of reinforced retaining wall failure based on reinforcement length", Int. J. Geo-Eng., 12, 1-14. https://doi.org/10.1186/s40703-021-00143-6
  20. Kwak, K., Park, D., Chung, W.K. and Kim, J. (2016), "Underwater 3-D spatial attenuation characteristics of electromagnetic waves with omnidirectional antenna", IEEE-ASME Trans. Mechatron. 21(3), 1409-1419. http://doi.org/ 10.1109/TMECH.2015.2509466
  21. Lee, J.-S., Song, J.U., Hong, W.-T. and Yu, J.-D. (2018), "Application of time domain reflectometer for detecting necking defects in bored piles", NDT E Int., 100, 132-141. https://doi.org/10.1016/j.ndteint.2018.09.006
  22. Lee, J.-S., Yu, J.-D., Han, K. and Kim, S.Y. (2020), "Strength characteristics of sand-silt mixtures subjected to cyclic freezing-thawing-repetitive loading", Sensors, 20(18), 5381. https://doi.org/10.3390/s20185381
  23. Lee, D., Lee, J.-S., Byun, Y.-H. and Kim, S.Y. (2023), "Application of optimized time domain reflectometry probe for estimating contaminants in saline soil", Geomech. Eng., Int. J., 33(3), 291-299. https://doi.org/10.12989/gae.2023.33.3.291
  24. Lee, D., Lee, J.-S., Ju, Y.K. and Byun, Y.-H. (2024a), "Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry", Comput. Concrete, Int. J., 33(5), 621-630. https://doi.org/10.12989/cac.2024.33.5.621
  25. Lee, D., Yu, J.-D., Jeong, S., Park, G. and Lee, J.-S. (2024b), "Non-destructive method for evaluating local integrity of model piles using electromagnetic waves", NDT E Int., 141, 102999. https://doi.org/10.1016/j.ndteint.2023.102999
  26. Lin, C.-P., Tang, S.-H., Lin, W.-C. and Chung, C.-C. (2009), "Quantification of cable deformation with time domain reflectometry-implications to landslide monitoring", J. Geotech. Geoenviron. Eng., 135(1), 143-152. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(143)
  27. Liu, Y., Bai, Y., Gao, G. and Su, S. (2023a), "Acoustic emission localization in concrete using a wireless air-coupled monitoring system", Smart Struct. Syst., Int. J., 32(4), 195-205. https://doi.org/10.12989/sss.2023.34.4.195
  28. Liu, Z.-J., Wang, H.-B., Ma, Z., Ni, Y.-Q., Jiang, J., Sun, R. and Zhu, H.-W. (2023b), "Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process", Smart Struct. Syst., Int. J., 32(4), 267-279. https://doi.org/10.12989/sss.2023.32.4.267
  29. Noborio, K., McInnes, K. and Heilman, J. (1996), "Measurements of soil water content, heat capacity, and thermal conductivity with a single TDR probe1", Soil Sci., 161(1), 22-28. https://doi.org/10.1097/00010694-199601000-00004
  30. O'Connor, K.M. and Dowding, C.H. (2021), Geomeasurements by pulsing TDR cables and probes, CRC Press, FL, USA.
  31. Park, G., Kim, N., Kang, S., Kim, S.Y., Yoo, C. and Lee, J.-S. (2023), "Instrumented dynamic cone penetrometer incorporated with time domain reflectometry", Measurement, 206, 112337. https://doi.org/10.1016/j.measurement.2022.112337
  32. Rhebergen, J.B., Lensen, H.A., Schwering, P.B., Marin, G.R. and Hendrickx, J.M. (2002), "Soil moisture distribution around land mines and the effect on relative permittivity", In: Detection and Remediation Technologies for Mines and Minelike Targets VII, Vol. 4742, pp. 269-280. https://doi.org/10.1117/12.479098
  33. Tacim, G., Posluk, E. and Gokceoglu, C. (2023), "Importance of grouting for tunneling in karstic and complex environment (a case study from Turkiye)", Int. J. Geo-Eng., 14(1), 6. https://doi.org/10.1186/s40703-023-00183-0
  34. Topp, G.C., Davis, J. and Annan, A.P. (1980), "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines", Water Resour. Res., 16(3), 574-582. https://doi.org/10.1029/WR016i003p00574
  35. Xuan, Y., Luo, M. and Du, G.-F. (2023), "Pipeline defect detection with depth identification using PZT array and time-reversal method", Smart Struct. Syst., Int. J., 32(4), 253-266. https://doi.org/10.12989/sss.2023.32.4.253
  36. Yu, J.-D., Kim, S.Y. and Lee, J.-S. (2020a), "Variations in velocity and sensitivity of electromagnetic waves in transmission lines configured in model piles with necking defects containing soils", Sensors, 20(22), 6541. https://doi.org/10.3390/s20226541
  37. Yu, J.-D., Lee, J.-S. and Yoon, H.-K. (2020b), "Circular time-domain reflectometry system for monitoring bridge scour depth", Mar. Geores. Geotechnol., 38(3), 312-321. https://doi.org/10.1080/1064119X.2019.1571131
  38. Yu, J.-D., Lee, J.-S. and Kim, H.-K. (2021), "A hybrid nondestructive testing method for detecting cavities behind the retaining wall", Smart Struct. Syst., Int. J., 28(4), 567-578. https://doi.org/10.12989/sss.2021.28.4.567