References
- Abbas, I.A. (2014a), "A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity", Appl. Math. Comput., 245, 108-115. https://doi.org/10.1016/j.amc.2014.07.059.
- Abbas, I.A. (2014b), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theoret. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
- Abbas, I.A., Abdalla, A.E.N.N., Alzahrani, F.S. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stress., 39(11), 1367-1377. https://doi.org/10.1080/01495739.2016.1218229.
- Abbas, I.A., Marin, M., Abouelmagd, E.I. and Kumar, R. (2015), "A green and naghdi model in a two-dimensional thermoelastic diffusion problem for a half space", J. Comput. Theoret. Nanosci., 12(2), 280-286. https://doi.org/10.1166/jctn.2015.3729.
- Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
- Abouelregal, A.E. and Zenkour, A.M. (2017), "Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model", Adv. Aircr. Spacecr. Sci., 4(6), 711-727. https://doi.org/10.12989/aas.2017.4.6.711.
- Abouelregal, A.E., Askar, S.S., Marin, M. and Mohamed, B. (2023), "The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod", Sci. Rep., 13, 9052. https://doi.org/10.1038/s41598-023-36371-2.
- Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small - scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", J. Appl. Math. Phys., 19(4), 614-627. https://doi.org/10.1007/BF01594969.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", J. Appl. Math. Phys., 20(1), 107-112. https://doi.org/10.1007/BF01591120.
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publisher Corporation, New Delhi, India.
- Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Ration. Mech. Anal., 43(1), 24-35. https://doi.org/10.1007/BF00251543
- Edelen, D.G.B., Green, A.E. and Laws, N. (1971), "Nonlocal continuum mechanics", Arch. Ration. Mech. Anal., 43(1), 36-44. https://doi.org/10.1007/BF00251544
- El-Nabulsi, R.A. (2018), "Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes", Contin. Mech. Thermodyn., 30(4), 889-915. https://doi.org/10.1007/s00161-018-0666-2.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen, A.C.A. and Wegner, J.L.R. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
- Fabrizio, M., Lazzari, B. and Nibbi, R. (2011), "Thermodynamics of non-local materials: extra fluxes and internal powers", Contin. Mech. Thermodyn., 23(6), 509. https://doi.org/10.1007/s00161-011-0193-x.
- Gao, Y., Xiao, W. shen and Zhu, H. (2019), "Nonlinear vibration of different types of functionally graded nanotubes using nonlocal strain gradient theory", Eur. Phys. J. Plus, 134(7), 205-219. https://doi.org/10.1140/epjp/i2019-12735-6.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287.
- Hu, W., Deng, Z., Han, S. and Zhang, W. (2013), "Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs", J. Comput. Phys., 235, 394-406. https://doi.org/10.1016/j.jcp.2012.10.032.
- Hu, W., Han, Z., Bridges, T. J. and Qiao, Z. (2023a), "Multi-symplectic simulations of W/M-shape-peaks solitons and cuspons for FORQ equation", Appl. Math. Lett., 145, 108772. https://doi.org/10.1016/j.aml.2023.108772.
- Hu, W., Huai, Y., Xu, M., Feng, X., Jiang, R., Zheng, Y. and Deng, Z. (2021b), "Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids", Mech. Syst. Signal Pr., 159, 107833. https://doi.org/10.1016/j.ymssp.2021.107833.
- Hu, W., Xi, X., Song, Z., Zhang, C. and Deng, Z.(2023b), "Coupling dynamic behaviors of axially moving cracked cantilevered beam subjected to transverse harmonic load", Mech. Syst. Signal Pr., 204, 110757. https://doi.org/10.1016/j.ymssp.2023.110757.
- Hu, W., Xu, M., Song, J., Gao, Q. and Deng, Z. (2021a), "Coupling dynamic behaviors of flexible stretching hub-beam system", Mech. Syst. Signal Pr., 151, 107389. https://doi.org/10.1016/j.ymssp.2020.107389.
- Hu, W., Xu, M., Zhang, F., Xiao, C. and Deng, Z. (2022), "Dynamic analysis on flexible hub-beam with step-variable cross-section", Mech. Syst. Signal Pr., 180, 109423. https://doi.org/10.1016/j.ymssp.2022.109423.
- Hu, W., Ye, J. and Deng, Z. (2020), "Internal resonance of a flexible beam in a spatial tethered system", J. Sound Vib., 475, 115286. https://doi.org/10.1016/j.jsv.2020.115286.
- Hu, W., Zhang, C. and Deng, Z. (2020), "Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs", Commun. Nonlinear Sci. Numer. Simul., 84, 105199. https://doi.org/10.1016/j.cnsns.2020.105199.
- Huai, Y., Hu, W., Song, W., Zheng, Y and Deng, Z. (2023), "Magnetic-field-responsive property of Fe3O4/polyaniline solvent-free nanofluid", Phys. Fluid, 35(1), 012001. https://doi.org/10.1063/5.0130588.
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020), "Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.
- Kumar, R., Marin, M. and Abbas, I.A. (2015), "Axisymmetric distributions of thick circular plate in a modified couple stress theory", J. Molecul. Eng. Mater., 3, 1550004. https://doi.org/10.1142/S2251237315500045.
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 955-963. https://doi.org/10.12989/scs.2019.33.1.123.
- Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341.
- Lata, P. and Singh, S. (2021a), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141.
- Lata, P. and Singh, S. (2021b), "Effects due to two temperature and hall current in a nonlocal isotropic magneto-thermoelastic solid with memory dependent derivatives", Coupled Syst. Mech., 10(4) 351-369. https://doi.org/10.12989/csm.2021.10.4.351.
- Lata, P. and Singh, S. (2022), "Axisymmetric deformations in a nonlocal isotropic thermoelastic solid with two temperature", Forces Mech., 6, 100068. https://doi.org/10.1016/j.finmec.2021.100068.
- Liani, M., Moulay, N., Bourada, F., Addou, F.Y., Bourada, M., Tounsi, A. and Hussain, M. (2022), "A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment", Adv. Mater. Res., 11(1), 1-22. https://doi.org/10.12989/amr.2022.11.1.001.
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Rev. Acad. Canar., 8(1), 101-106
- Marin, M. (1997), "On the domain of analyticity", Arch. Math., 33(1), 301-308.
- Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
- Othman, M.I.A., Said, S. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model", Int. J. Numer. Method. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, UK.
- Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 1-24. https://doi.org/10.3390/sym12030488.
- Sellitto, A. and Di Domenico, M. (2019), "Nonlocal and nonlinear contributions to the thermal and elastic high-frequency wave propagations at nanoscale", Contin. Mech. Thermodyn., 31(3), 807-821. https://doi.org/10.1007/s00161-018-0738-3.
- Singh, S. and Lata, P. (2023), "Effect of two temperature and nonlocality in an isotropic thermoelastic thick circular plate without energy dissipation", Partial Differ. Equ. Appl. Math., 7, 100512. https://doi.org/10.1016/j.padiff.2023.100512.
- Yadav, A.K., Carrera, E., Marin, M. and Othman, M.I.A. (2024), "Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity", Mech. Adv. Mater. Struct., 31(5), 1083-1096. https://doi.org/10.1080/15376494.2022.2130484.
- Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA Journal of Applied Mathematics, 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
- Youssef, H.M. and Al-Lehaibi, E.A. (2007), "State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem", Int. J. Solids Struct., 44(5), 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035.
- Zenkour, A.M. and Abbas, I.A. (2013), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", J. Vib. Control, 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.
- Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.