DOI QR코드

DOI QR Code

Numerical and experimental behavior of moment concrete frame retrofitted with TADAS metal yielding damper under lateral loading

  • Reza Nazeran (Civil Engineering Department, Semnan Branch, Islamic Azad University) ;
  • Ali Hemmati (Seismic Geotechnical and High Performance Concrete Research Centre, Civil Engineering Department, Islamic Azad University) ;
  • Hasan Haji Kazemi (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2023.04.03
  • 심사 : 2023.11.20
  • 발행 : 2024.03.10

초록

Since the cost of reconstruction is very high and the structure may have been damaged by an earthquake, we must retrofit the structure. Therefore, the importance of studying this issue is very high in order to achieve the desired resistance against the regulations. The present study involved the numerical and experimental analysis of nine concrete frames, consisting of three concrete frames, three concrete frames with bracing, and three concrete frames with a TADAS damper. The purpose of this study is to strengthen the damaged concrete frame using braces and TADAS dampers. Observations were made of the frames as they were subjected to controlled displacement. Also, ABAQUS software was used to compare numerical and experimental results. According to the results, the software was sufficiently capable of modeling the studied frames. Additionally, a parametric study was conducted on the thickness and number of bending plates. Thickness increases from 8 mm to 12 mm, 8 mm to 15 mm, and 8 mm to 20 mm, increasing the base shear by about 6.7%, 11.1%, and 25%, respectively. Furthermore, increasing the number of plates from 4 to 5, 4 to 6, and 4 to 7 increased base shears by about 4.5%, 8.4%, and 14%, respectively.

키워드

참고문헌

  1. Abou-Elfath, H. and Ghobarah, A. (2000), "Behaviour of reinforced concrete frames rehabilitated with concentric steel bracing", Cana. J. Civil Eng., 27(3), 433-444. http://doi.org/10.1139/cjce-27-3-433.
  2. ACI 318-14 (2014), Building Code Requirements for Structural Concrete (ACI 318-14).
  3. Aguiar, R., Mora, D. and Rodriguez, M. (2016), "CEINCI-LAB un software libre para hallar la curva de capacidad sismica de porticos con disipadores ADAS o TADAS", Revista ingenieria de construccion, 31(1), 37-53. http://doi.org/10.4067/S0718-50732016000100004.
  4. Alehashem, S.M.S., Keyhani, A. and Pourmohammad, H. (2008), "Behavior and performance of structures equipped with ADAS & TADAS dampers (a comparison with conventional structures)", The 14th World Conference on Earthquake Engineering, October.
  5. Cheraghi, K., TahamouliRoudsari, M., Kiasat, S. and Esfandiari, J. (2023), "Numerical investigation of cyclic behavior of angled U-shaped yielding damper on steel frames", Periodica Polytechnica Civil Engineering, https://doi.org/10.3311/PPci.23213.
  6. Deng, K., Pan, P., Li, W. and Xue, Y. (2015), "Development of a buckling restrained shear panel damper", J. Constr. Steel Res., 106, 311-321. https://doi.org/10.1016/j.jcsr.2015.01.004.
  7. Deng, K., Pan, P., Sun, J., Liu, J. and Xue, Y. (2014), "Shape optimization design of steel shear panel dampers", J. Constr. Steel Res., 99, 187-193. https://doi.org/10.1016/j.jcsr.2014.03.001.
  8. Ferraioli, M., Avossa, A.M. and Malangone, P. (2006), "Performance-based assessment of R.C. buildings strengthened with steel braces", Proceedings of the 2nd International Congress, Nalps, Italy.
  9. Ghabraie, K., Chan, R., Huang, X. and Xie, Y.M. (2010), "Shape optimization of metallic yielding devices for passive mitigation of seismic energy", Eng. Struct., 32(8), 2258-2267. https://doi.org/10.1016/j.engstruct.2010.03.028.
  10. Ghobarah, A. and Abou Elfath, H. (2001), "Rehabilitation of a reinforced concrete frame using eccentric steel bracing", Eng. Struct., 23(7), 745-755. https://doi.org/10.1016/S0141-0296(00)00100-0.
  11. Hemmati, A., Kheyroddin, A. and Farzad, M. (2020), "Experimental study of reinforced concrete frame rehabilitated by concentric and eccentric bracing", J. Rehab. Civil Eng., 8(1), 97-108. https://doi.org/10.22075/JRCE.2019.16055.1301.
  12. Ince, G., Ince, H.H. and Ocal, C. (2015), "Seismic behavior of RC frames retrofitted by eccentrically braced frames with vertical link", 27th The IIER International Conference, Russia. Khazaei, M. (2013), "Investigation on dynamics nonlinear analysis of steel frames with steel dampers", Procedia Eng., 54, 401-412. https://doi.org/10.1016/j.proeng.2013.03.036.
  13. Khoshkalam, M., Mortezagholi, M.H. and Zahrai, S.M. (2021), "Proposed modification for ADAS damper to eliminate axial force and improve seismic performance", J. Earthq. Eng., 26(10), 5130-5152. https://doi.org/10.1080/13632469.2020.1859419.
  14. Kothapalli, N.K., Chidambaram, R.S. and Agarwal, P. (2023), "Experimental evaluation of steel bracings and metallic yield damper as retrofit techniques for severely damaged RC building frames", J. Earthq. Eng., 27(12), 3564-3587. https://doi.org/10.1080/13632469.2022.2141373.
  15. Lee, C.H., Ju, Y.K., Min, J.K., Lho, S.H. and Kim, S.D. (2015), "Non-uniform steel strip dampers subjected to cyclic loadings", Eng. Struct., 99, 192-20. https://doi.org/10.1016/j.engstruct.2015.04.052.
  16. Li, H.N. and Li, G. (2007), "Experimental study of structure with "dual function" metallic dampers", Eng. Struct., 29(8), 1917-1928. https://doi.org/10.1016/j.engstruct.2006.10.007.
  17. Maheri, M.R. and Akbari, R. (2003), "Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings", Eng. Struct., 25(12), 1505-1513. https://doi.org/10.1016/S0141-0296(03)00117-2.
  18. Maheri, M.R. and Hadjipour, A. (2003), "Experimental investigation and design of steel brace connection to RC frame", Eng. Struct., 25(13), 1707-1714. https://doi.org/10.1016/S0141-0296(03)00162-7.
  19. Maheri, M.R., Kousari, R. and Razazan, M. (2003), "Pushover tests on steel X-braced and knee-braced RC frames", Eng. Struct., 25(13), 1697-1705. https://doi.org/10.1016/S0141-0296(03)00150-0.
  20. Mahmoudi, M. and Abdi, M.G. (2012), "Evaluating response modification factors of TADAS frames", J. Constr. Steel Res., 71, 162-170. https://doi.org/10.1016/j.jcsr.2011.10.015.
  21. Mahmoudi, M. and Ghasem Abdi, M. (2014), "The effect of ductility on response modification factors of TADAS frames", Res. Civil Environ. Eng., 2(03), 80-95.
  22. Mahmoudi, M., Abdi, M.Gh. and Mahmoudi, F. (2014), "Influence of the TADAS dampers on the ductility reduction factor of steel frames", 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, August.
  23. Mohammadi, R.K., Nasri, A. and Ghaffary, A. (2017), "TADAS dampers in very large deformations", Int. J. Steel Struct., 17, 515-524. https://doi.org/10.1007/s13296-017-6011-y.
  24. Nateghi-Alahi, F. and Torbat Esfahani, M. (2015), "Experimental and analytical behavior of accordion metallic dampers by increasing the number of layers", Sharif J. Civil Eng., 31(3.1), 19-29.
  25. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
  26. Rais, S., Ounis, O. and Chebili, R. (2013), "Study and modelling of dynamic behaviour of structures with energy dissipation devices type Adas", 2nd Turkish Conference on Earthquake Engineering and Seismology-TDMSK, Antakya, Hatay, Turkey.
  27. Saghafi, M.H, Golafshar, A.L.I., Yahyaee, A. and Zareian, M.S. (2019), "Analytical assessment of reinforced concrete frames equipped with TADAS dampers", J. Rehab. Civil Eng., 7(2), 138-151. https://doi.org/10.22075/JRCE.2018.13701.1249.
  28. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006.
  29. Sharbatdar, M.K., Kheyroddin, A. and Emami, E. (2012), "Cyclic performance of retrofitted reinforced concrete beam-column joints using steel prop", Constr. Build. Mater., 36, 287-294. https://doi.org/10.1016/j.conbuildmat.2012.04.115.
  30. TahamouliRoudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers", Struct. Durab. Hlth. Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927.
  31. TahamouliRoudsari, M., Eslamimanesh, M.B., Entezari, A.R., Noori, O. and Torkaman, M. (2018), "Experimental assessment of retrofitting RC moment resisting frames with ADAS and TADAS yielding dampers", Struct., 14, 75-87. https://doi.org/10.1016/j.istruc.2018.02.005.
  32. Tsai, C.S. and Tsai, K.C. (1995), "TPEA device as seismic damper for high-rise buildings", J. Eng. Mech., 121(10), 1075-1081. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1075).
  33. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727.
  34. Vargas, R. and Bruneau, M. (2009), "Analytical response and design of buildings with metallic structural fuses, I", J. Struct. Eng., 135(4), 386-393. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(386).
  35. Wang, C. and Xiao, J. (2018), "Evaluation of the stress-strain behavior of confined recycled aggregate concrete under monotonic dynamic loadings", Cement Concrete Compos., 87, 149-163. https://doi.org/10.1016/j.cemconcomp.2017.12.012.
  36. Wang, C., Wu, H. and Li, C. (2022a), "Hysteresis and damping properties of steel and polypropylene fiber reinforced recycled aggregate concrete under uniaxial low-cycle loadings", Constr. Build. Mater., 319, 126191. https://doi.org/10.1016/j.conbuildmat.2021.126191.
  37. Wang, C., Xiao, J., Liu, W. and Ma, Z. (2022b), "Unloading and reloading stress-strain relationship of recycled aggregate concrete reinforced with steel/polypropylene fibers under uniaxial low-cycle loadings", Cement Concrete Compos., 131, 104597. https://doi.org/10.1016/j.cemconcomp.2022.104597.
  38. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644.
  39. Wu, Y., Lu, J. and Chen, Y. (2020), "Influence of neck width on the performance of ADAS device with diamond-shaped hole plates", Struct. Eng. Mech., 74(1), 19-32. https://doi.org/10.12989/sem.2020.74.1.019.
  40. Xu, L.Y., Nie, X. and Fan, J.S. (2016), "Cyclic behaviour of low-yield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002.
  41. Yen, J.Y.R. and Chien, H.K. (2010), "Steel plates rehabilitated RC beam-column joints subjected to vertical cyclic loads", Constr. Build. Mater., 24(3), 332-339. https://doi.org/10.1016/j.conbuildmat.2009.08.029.
  42. Zahrai, S.M. and Rad, B. (2007), "Analytical investigation of TADAS damper applied in seismic rehabilitation & design of concrete structures", J. Adv. Mater. Eng. (Esteghlal), 25(2), 51-64.
  43. Zhu, B., Wang, T. and Zhang, L. (2018), "Quasi-static test of assembled steel shear panel dampers with optimized shapes", Eng. Struct., 172, 346-357. https://doi.org/10.1016/j.engstruct.2018.06.004.