DOI QR코드

DOI QR Code

Design optimization of structural component (hitch bracket of tractor): A reverse engineering approach

  • Dilip K. Sahu (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Priyam P. Tripathy (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Trupti R. Mahapatra (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Punyapriya Mishra (Department of Mechanical Engineering, Veer Surendra Sai University of Technology) ;
  • Debadutta Mishra (Department of Production Engineering, Veer Surendra Sai University of Technology)
  • Received : 2023.06.04
  • Accepted : 2024.02.20
  • Published : 2024.03.10

Abstract

Manufacturing industries, now-a-days, focus mostly on redesigning of the products for reducing cost and lead-time via detailed analysis of its composition and constructional design regarded as the Reverse Engineering (RE) process that involves the acquisition of relevant data of the original product, analysis for its functional use and finally, reproduction of the design for improving the functionality. In the present work, a new model based on optimization at different steps of RE, is proposed to redesign a structural component, which is subjected to severe tensile stress while in service. The component under study is an accessory namely, hitch bracket, attached to the rear axle of a tractor to connect it to the plough. The methodology includes building of a 3D Computer Aided Design (CAD) model from the scanned data of the existing component with the help of 3D scanner. Computer Aided Engineering (CAE) analysis is carried out on the CAD model with existing load conditions by Finite Element Analysis (FEA). Topological optimization is carried out giving rise to a modified/optimized design of the component. It is observed that the performance of the modified component improves significantly with simultaneous weight reduction without affecting its functional use and the manufacturing process setup.

Keywords

References

  1. Alai, S. (2013), "A review of 3D design parameterization using reverse engineering", Int. J. Emerg. Technol. Adv. Eng., 3, 171-179.
  2. Bardell, R., Balendran, V. and Sivayoganathan, K. (2003), "Accuracy analysis of 3D data collection and free-form modelling methods", J. Mater. Proc. Technol., 133, 26-33. https://doi.org/10.1016/S0924-0136(02)00212-1.
  3. Belarifi, F., Bayraktar, E. and Benamar, A. (2008), "The reverse engineering to optimise the dimensional conical spur gear by CAD", J. Achiev. Mater. Manuf. Eng., 31, 429-433.
  4. Buonamici, F., Carfagni, M., Furferi, R., Governi, L., Lapini, A. and Volpe, Y. (2018), "Reverse engineering modeling methods and tools: a survey", Comput. Aid. Des. Appl., 15, 443-464. 10.1080/16864360.2017.1397894.
  5. Cheng, Z.Q., Thacker, J.G., Pilkey, W.D., Hollowell, W.T., Reagan, S.W. and Sieveka, E.M. (2001), "Experiences in reverse-engineering of a finite element automobile crash model", Finite Elem. Anal. Des., 37, 843-860. https://doi.org/10.1016/S0168-874X(01)00071-3.
  6. Chougule, V.N., Mulay, A.V. and Ahuja, B.B. (2014), "Development of patient specific implants for Minimum Invasive Spine Surgeries (MISS) from non-invasive imaging techniques by reverse engineering and additive manufacturing techniques", Procedia Eng., 97, 212-219. https://doi.org/10.1016/j.proeng.2014.12.244.
  7. Dond, T., Sutar, O., Shelke, D., Vable, R. and Notla, S. (2022), "Design and topological optimization of wheel hub", Int. J. Adv. Res. Sci. Comm. Tech., 2(5), 64-75 https://doi.org/10.48175/ijarsct-4013.
  8. Elizondo, A. and Reinert, F. (2019), "Limits and hurdles of Reverse Engineering for the replication of parts by Additive Manufacturing (Selective Laser Melting)", Procedia Manuf., 41, 1009-1016. https://doi.org/10.1016/j.promfg.2019.10.027.
  9. Feng, H., Liu, Y. and Xi, F. (2001), "Analysis of digitizing errors of a laser scanning system", Precis. Eng., 25, 185-191. https://doi.org/10.1016/S0141-6359(00)00071-4.
  10. Hammett, P.C., Frescoln, K.D. and Garcia-Guzman, L. (2003), "Changing automotive body measurement system paradigms with 3D non-contact measurement systems", Technical Report UMTRI-2003-43, The University of Michigan.
  11. Hussain, M., Rao, S.C. and Prasad, K.E. (2008), "Reverse engineering: Point cloud generation with CMM for part modeling and error analysis", ARPN J. Eng. Appl. Sci., 3, 37-40.
  12. Ismail, A.R., Soon, Y.C., Abdullah, S., Zulkifli, R., Sopian, K. and Rahman, M.N.A. (2009), "Reverse engineering in fabrication of piston crown", Eur. J. Sci. Res., 29, 136-146.
  13. Khode, A.P., Senthilkumar, K., Patil, B.S., Kulkarni, N. and Trikande, M.W. (2017), "Shape optimization and weight reduction of seat structure for wheeled armoured amphibious combat vehicle", Mater. Today: Proc., 4, 1917-1926. https://doi.org/10.1016/j.matpr.2017.02.037.
  14. LeBaron, D.D. and Mattson, C.A. (2014), "Using topology optimization to numerically improve barriers to reverse engineering", J. Mech. Des., 136, 21007-21008. https://doi.org/10.1115/1.4025962.
  15. Li, F., Feng, L., Wu, X. and Hui, Y. (2009), "The application of reverse engineering in the design of electric vehicle panel", Appl. Mech. Mater., 16-19, 283-287. https://doi.org/10.4028/www.scientific.net/AMM.16-19.283.
  16. Liang, S.R. and Lin, A.C. (2002), "Probe-radius compensation for 3D data points in reverse engineering", Comput. Indus., 48(3), 241-251. https://doi.org/10.1016/S0166-3615(02)00038-6.
  17. Liu, J. (2020), "An adaptive process of reverse engineering from point clouds to CAD models", Int. J. Comput. Integr. Manuf., 33(9), 840-858. https://doi.org/10.1080/0951192X.2020.1803501.
  18. Liu, J. and Ma, Y. (2017), "Sustainable design oriented level set topology optimization", J. Mech. Des., 139, 11403-11408. https://doi.org/10.1115/1.4035052.
  19. Martinez, S., Cuesta, E., Barreiro, J. and A'lvarez, B. (2010), "Analysis of laser scanning and strategies for dimensional and geometrical control", Int. J. Adv. Manuf. Technol., 46, 621-629. https://doi.org/10.1007/s00170-009-2106-8.
  20. Paulic, M., Irgolic, T., Balic, J., Cus, F., Cupar, A., Brajlih, T. and Drstvensek, I. (2014), "Reverse engineering of parts with optical scanning and additive manufacturing", Procedia Eng., 69, 795-803. https://doi.org/10.1016/j.proeng.2014.03.056.
  21. Raffo, A., Barrowclough, O.J. and Muntingh, G. (2020), "Reverse engineering of CAD models via clustering and approximate implicitization", Comput. Aid. Geometr. Des., 80, 101876, https://doi.org/10.1016/j.cagd.2020.101876.
  22. Raja, V. (2008), Introduction to Reverse Engineering, Reverse Engineering: An Industrial Perspective, Springer London, London.
  23. Ramnath, B., Elanchezhian, C., Jeykrishnan, J., Ragavendar, R., Rakesh, P.K., Dhamodar, J.S. and Danasekar, A. (2018), "Implementation of reverse engineering for crankshaft manufacturing industry", Mater. Today: Proc., 5, 994-999. https://doi.org/10.1016/j.matpr.2017.11.175.
  24. Singh, N. and Singh, J. (2012), "Reverse engineering of brake rod of Bajaj Pulsar 150CC motor bike using solidworks and autodesk inventor", J. Eng. Res. Stud., 3, 40-48.
  25. Son, S., Park, H. and Lee, K.H. (2002), "Automated laser scanning system for reverse engineering and inspection", Int. J. Mach. Tool. Manuf., 42, 889-897. https://doi.org/10.1016/S0890-6955(02)00030-5.
  26. Thakare, S.B. and Awate, A. (2013), "Reverse engineering using CMM and CAD tool", Int. J. Eng. Res. Technol., 2, 507-510.
  27. Thomson, W.B., Owen, J.C., Germain, H.J.D.S., Stark, S.R. and Henderson, T.C. (1999), "Feature-based reverse engineering of mechanical parts", IEEE Trans. Robot. Autom., 15, 57-66. https://doi.org/10.1109/70.744602.
  28. Varudy, T., Martin, R.R. and Cox, J. (1997), "Reverse engineering of geometric models", Comput. Aid. Des., 29, 253-254. https://doi.org/10.1016/S0010-4485(96)00054-1.
  29. Vijay, L.S. and Nath, N.K. (2022), "Design, analysis and topological optimization of an automobile steering yoke", Int. J Eng. Res. Tech., 11(02), 168-170.
  30. Viqaruddin, M. and Reddy, D.R. (2017), "Structural optimization of control arm for weight reduction and improved performance", Mater. Today: Proc., 4, 9230-9236. https://doi.org/10.1016/j.matpr.2017.07.282.
  31. Yang, X. and Li, M. (2018), "Discrete multi-material topology optimization under total mass constraint", Comput. Aid. Des., 102, 182-192. https://doi.org/10.1016/j.cad.2018.04.023.
  32. Zexiao, X., Jianguo, W. and Qiumei, Z. (2005), "Complete 3D measurement in reverse engineering using a multi-probe system", Int. J. Mach. Tools Manuf., 45, 1474-1486. https://doi.org/10.1016/j.ijmachtools.2005.01.028.
  33. Zhang, Y. (2003), "Research into the engineering application of reverse engineering technology", J. Mater. Proc. Technol., 139, 472-475. https://doi.org/10.1016/S0924-0136(03)00513-2.
  34. Zhu, J., Han Z., Chuang W., Lu Z., Shangqin Y. and Weihong Z. (2021), "A review of topology optimization for additive manufacturing: Status and challenges", Chin. J. Aeronaut., 34(1), 91-110. https://doi.org/10.1016/j.cja.2020.09.020.
  35. Zhu, L., Li, N. and Childs, P.R.N. (2018), "Light-weighting in aerospace component and system design", Propuls. Power Res., 7, 103-119. https://doi.org/10.1016/j.jppr.2018.04.001.