DOI QR코드

DOI QR Code

Vibroacoustic analysis of stiffened functionally graded panels in thermal environments

  • Ashish K. Singh (Department of Civil Engineering, National Institute of Technology Silchar) ;
  • Anwesha Pal (Department of Civil Engineering, National Institute of Technology Silchar) ;
  • Shashi Kumar (IMEG Engineering India Pvt Ltd.) ;
  • Anuja Roy (Department of Construction Engineering (Salt Lake Campus), Jadavpur University) ;
  • Atanu Sahu (Department of Civil Engineering, National Institute of Technology Silchar)
  • Received : 2023.08.02
  • Accepted : 2024.02.14
  • Published : 2024.03.10

Abstract

Functionally graded materials (FGMs) have gained substantial attention from researchers due to their exceptional strength and thermal resistance. Their utilization in the aviation and automobile industries has significantly improved the efficiency of various structural components. Moreover, stiffened panels find wide applications in aerospace and automobile structures and these panels are frequently exposed to extreme environments. It is from this perspective that our research is focused on analysing the vibroacoustic response of stiffened functionally graded panels subjected to external dynamic excitations in a thermal environment. In the present research work, a finite element model is developed to conduct the dynamic analysis of functionally graded stiffened panels using the first-order shear deformation theory. Subsequently, a boundary element based model is also developed and coupled with the finite element model to investigate the sound radiation behaviour of those panels in a thermal environment. The material properties of FG stiffened panels are considered as temperature dependent, while the thermal environment is assumed to be acting as linearly varying through the panel's thickness. The present investigation aim to compare the vibroacoustic responses of different panels due to stiffener orientations, material compositions, power law indices and plate thicknesses at various temperatures. The research findings highlight the significant impact of addition of stiffeners, its orientation and material compositions on the sound radiation characteristics of these panels under thermal environments. The present numerical model can easily be employed for analysing the sound radiation behaviour of other types of flat or curved stiffened panels having arbitrary geometry and boundary conditions.

Keywords

References

  1. Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
  2. Alshabatat, N. and Naghshineh, K. (2021), "Minimizing the radiated sound power from vibrating plates by using in-plane functionally graded materials", J. Vibroeng., 23(3), 744758. https://doi.org/10.21595/jve.2020.21621.
  3. Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085.
  4. Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012.
  5. Birman, V. and Byrd, L.W. (2008), "Stability and natural frequencies of functionally graded stringer-reinforced panels", Compos. Part B: Eng., 39(5), 816-825. https://doi.org/10.1016/j.compositesb.2007.10.009.
  6. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  7. Chandra, N., Raja, S. and Gopal, K.N. (2014), "Vibro-acoustic response and sound transmission loss analysis of functionally graded plates", J. Sound Vib., 333(22), 5786-5802. https://doi.org/10.1016/j.jsv.2014.06.031.
  8. Coyette, J.P. and Van de Peer, J. (1994). "Acoustic boundary elements, advanced techniques in applied and numerical acoustics", ISAAC, 5, 17-19.
  9. Dong, D.T., Nam, V.H., Trung, N.T., Phuong, N.T. and Hung, V.T. (2022), "Nonlinear thermomechanical buckling of sandwich FGM oblique stiffened plates with nonlinear effect of elastic foundation", J. Thermoplast. Compos. Mater., 35(10), 1441-1467. https://doi.org/10.1177/0892705720935957.
  10. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
  11. Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
  12. Duc, N.D. and Quan, T.Q. (2013), "Nonlinear postbuckling of imperfect eccentrically stiffened PFGM double curved thin shallow shells on elastic foundations in thermal environments", Compos. Struct., 106, 590-600. https://doi.org/10.1016/j.compstruct.2013.07.010.
  13. Duc, N.D. and Thang, P.T. (2014), "Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments", Int. J. Mech. Sci., 81, 17-25. https://doi.org/10.1016/j.ijmecsci.2014.01.016.
  14. Duc, N.D., Cong, P.H. and Quang, V.D. (2016a), "Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment", Int. J. Mech. Sci., 115, 711-722. https://doi.org/10.1016/j.ijmecsci.2016.07.010.
  15. Duc, N.D., Cong, P.H. and Quang, V.D. (2016b), "Thermal stability of eccentrically stiffened FGM plate on elastic foundation based on Reddy's third-order shear deformation plate theory", J. Therm. Stress., 39(7), 772-794. https://doi.org/10.1080/01495739.2016.1188638.
  16. Fu, Z., Xi, Q., Li, Y., Huang, H. and Rabczuk, T. (2020), "Hybrid FEM-SBM solver for structural vibration induced underwater acoustic radiation in shallow marine environment", Comput. Meth. Appl. Mech. Eng., 369, 113236. https://doi.org/10.1016/j.cma.2020.113236.
  17. Golmakani, M. and Kadkhodayan, M. (2013), "Large deflection thermoelastic analysis of functionally graded stiffened annular sector plates", Int. J. Mech. Sci., 69, 94-106. https://doi.org/10.1016/j.ijmecsci.2013.01.033.
  18. Hasheminejad, S.M. and Shabanimotlagh, M. (2008), "Sound insulation characteristics of functionally graded panels", Acta Acustica United with Acustica, 94(2), 290-300. http://dx.doi.org/10.3813/AAA.918032.
  19. Hong Cong, P., Anh, V.M. and Dinh Duc, N. (2017), "Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy's TSDT in thermal environment", J. Therm. Stress., 40(6), 704-732. https://doi.org/10.1080/01495739.2016.1261614.
  20. Hu, Z., Zhou, K., Huang, S. and Chen, Y. (2021), "Sound transmission analysis of functionally graded material plates with general boundary conditions in thermal environments", Appl. Acoust., 174, 107795. https://doi.org/10.1016/j.apacoust.2020.107795.
  21. Huang, C. and Nutt, S. (2011), "An analytical study of sound transmission through unbounded panels of functionally graded materials", J. Sound Vib., 330(6), 1153-1165. https://doi.org/10.1016/j.jsv.2010.09.020.
  22. Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solid. Struct., 41(9-10), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012.
  23. Kim, S.E., Duc, N.D., Nam, V.H. and Van Sy, N. (2019), "Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment", Thin Wall. Struct., 142, 287-296. https://doi.org/10.1016/j.tws.2019.05.013.
  24. Kim, Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
  25. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  26. Kumar, B.R., Ganesan, N. and Sethuraman, R. (2009), "Vibro-acoustic analysis of functionally graded elliptic disc under thermal environment", Mech. Adv. Mater. Struct., 16(2), 160-172. https://doi.org/10.1080/15376490802625506.
  27. Li, F., Chen, Y. and Lv, M. (2021), "Vibro-acoustic characteristics of sigmoid functionally graded sandwich plates with temperature-dependent materials", Thin Wall. Struct., 159, 107310. https://doi.org/10.1016/j.tws.2020.107310.
  28. Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324(3-5), 733-750. https://doi.org/10.1016/j.jsv.2009.02.036.
  29. Liu, J., Fei, Q., Wu, S., Zhang, D. and Jiang, D. (2021), "Dynamic response of curvilinearly stiffened plates under thermal environment", J. Mech. Sci. Technol., 35(6), 23592367. https://doi.org/10.1007/s12206-021-0508-1.
  30. Mindlin, R. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1115/1.4010217.
  31. MNA, G.T., Chakrabarti, A. and Prakash, V. (2014), "Vibration characteristics of functionally graded material skew plate in thermal environment", Int. J. Mech. Mechatr. Eng., 8(1), 142-153. https://doi.org/10.5281/zenodo.1090741.
  32. Moeini, S. and Ahmadian, M. (2009), "Structural analysis of stiffened FGM thick walled cylinders by application of a new cylindrical super element", World Acad. Sci. Eng. Technol., 58, 116-121.
  33. Najafizadeh, M., Hasani, A. and Khazaeinejad, P. (2009), "Mechanical stability of functionally graded stiffened cylindrical shells", Appl. Math. Model., 33(2), 1151-1157. https://doi.org/10.1016/j.apm.2008.01.009.
  34. Nguyen, H.N., Tan, T.C., Luat, D.T., Phan, V.D., Thom, D.V. and Minh, P.V. (2019), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Mater., 12(8), 1262. https://doi.org/10.3390/ma12081262.
  35. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech.-A/Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  36. Quan, T.Q., Ha, T.T.H. and Nguyen, D.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
  37. Quang, V.D., Nguyen, D.K., Nguyen, D.D. (2021), "The effect of structural characteristics and external conditions on the dynamic behavior of shear deformable FGM porous plates in thermal environment", J. Mech. Sci. Technol., 35(8), 3323-3329. https://doi.org/10.1007/s12206-021-0706-x.
  38. Ram, K.S. and Sinha, P. (1992), "Hygrothermal effects on the free vibration of laminated composite plates", J. Sound Vib., 158(1), 133-148. https://doi.org/10.1016/0022-460X(92)90669-O.
  39. Sahu, A., Banerjee, T., Niyogi, A.G. and Bhattacharya, P. (2013), "Active control of radiated sound from stiffened plates using IDE-PFC actuators", Int. J. Acoust. Vib., 18(3), 109-116. http://dx.doi.org/10.20855/ijav.2013.18.3326.
  40. Sahu, A., Niyogi, A.G., Rose, M. and Bhattacharya, P. (2017), "A two-stage model for energy transmission and radiation analysis of laminated composite double-leaf structures", J. Vib. Acoust., 139(4), 041008. https://doi.org/10.1115/1.4036390.
  41. Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018.
  42. Shen, H.S. and Yang, D.Q. (2015), "Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments", Appl. Math. Model., 39(5-6), 1480-1499. https://doi.org/10.1016/j.apm.2014.09.010.
  43. Sheng, G. and Wang, X. (2007), "Effects of thermal loading on the buckling and vibration of ring-stiffened functionally graded shell", J. Therm. Stress., 30(12), 1249-1267. 10.1080/01495730701519623.
  44. Singh, B.N., Ranjan, V. and Hota, R. (2022), "Vibroacoustic response of mode localized thin functionally graded plates using physical neutral surface", Compos. Struct., 287, 115301. https://doi.org/10.1016/j.compstruct.2022.115301.
  45. Sun, J., Lim, C., Xu, X. and Mao, H. (2016), "Accurate buckling solutions of grid-stiffened functionally graded cylindrical shells under compressive and thermal loads", Compos. Part B: Eng., 89, 96-107. https://doi.org/10.1016/j.compositesb.2015.11.020.
  46. Tacza la, M., Buczkowski, R. and Kleiber, M. (2017). "Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments", Compos. Part B: Eng., 109, 238-247. https://doi.org/10.1016/j.compositesb.2016.09.023.
  47. Tamijani, A.Y. and Kapania, R.K. (2012), "Vibration analysis of curvilinearly-stiffened functionally graded plate using element free Galerkin method", Mech. Adv. Mater. Struct., 19(1-3), 100-108. https://doi.org/10.1080/15376494.2011.572240.
  48. Teter, A. and Kolakowski, Z. (2022), "Interactive buckling of wide plates made of functionally graded materials with rectangular stiffeners", Thin Wall. Struct., 171, 108750. https://doi.org/10.1016/j.tws.2021.108750.
  49. Van Dung, D. and Nga, N.T. (2016), "Buckling and postbuckling nonlinear analysis of imperfect FGM plates reinforced by FGM stiffeners with temperature-dependent properties based on TSDT", Acta Mechanica, 227(8), 2377-2401. https://doi.org/10.1007/s00707-016-1637-y.
  50. Van Dung, D. and Nga, N.T. (2018), "Thermomechanical post buckling analysis of eccentrically stiffened FGM sandwich plates with general Sigmoid and power laws based on TSDT", J. Sandw. Struct. Mater., 20(8), 907-945. https://doi.org/10.1177/109963621668254.
  51. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "An analytical investigation on free vibration of FGM doubly curved shallow shells with stiffeners under thermal environment", Aerosp. Sci. Technol., 40, 181-190. https://doi.org/10.1016/j.ast.2014.11.006.
  52. Xi, Q., Fu, Z., Zou, M. and Chuanzeng, Z. (2024), "An efficient hybrid collocation scheme for vibro-acoustic analysis of the underwater functionally graded structures in the shallow ocean", Comput. Meth. Appl. Mech. Eng., 418, 116537. https://doi.org/10.1016/j.cma.2023.116537.
  53. Yang, J. and Shen, H.S. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5.
  54. Yang, T., Zheng, W., Huang, Q. and Li, S. (2016), "Sound radiation of functionally graded materials plates in thermal environment", Compos. Struct., 144, 165-176. https://doi.org/10.1016/j.compstruct.2016.02.065.
  55. Zghal, S., Trabelsi, S., Frikha, A. and Dammak, F. (2021), "Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element", J. Therm. Stress., 44(2), 315-341. https://doi.org/10.1080/01495739.2021.1871577.
  56. Zhou, K., Lin, Z., Huang, X. and Hua, H. (2019), "Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions", Appl. Acoust., 154, 236-250. https://doi.org/10.1016/j.apacoust.2019.05.003.