DOI QR코드

DOI QR Code

Numerical simulation of infill CACB wall cracking subjected to wind loads

  • Ruige Li (School of Civil Engineering and Architecture, Taizhou University) ;
  • Yu Gao (School of Civil Engineering and Architecture, Taizhou University) ;
  • Hongjian Lin (School of Civil Engineering and Architecture, Taizhou University) ;
  • Mingfeng Huang (School of Civil Engineering & Architecture, Zhejiang University) ;
  • Chenghui Wang (Taizhou Institute of Planning and Design for Urban and Rural) ;
  • Zhongzhi Hu (School of Civil Engineering and Architecture, Taizhou University) ;
  • Lingyi Jin (Zhedong Engineering Investigation Institute)
  • Received : 2023.11.06
  • Accepted : 2024.02.21
  • Published : 2024.03.10

Abstract

The cracking mechanism in ceramsite aerated concrete block (CACB) infill walls were studied in low seismic fortification intensity coastal areas with frequent occurrence of typhoons. The inter-story drifts of an eight-story residential building under wind loads and a seismic fortification intensity of six degrees were analyzed by using the PKPM software. The maximum inter-story drift ratio of the structure in wind load was found to be comparable to that under the seismic fortification intensity of six degrees. However, when accounting for the large gust wind speed of typhoon, the maximum inter-story drift ratio was much larger than that obtained under reference wind load. In addition, the finite element models of RC frames were employed by displacement loading to simulate two scenarios with and without window hole in the CACB infill walls, respectively. The simulation results show no signs of cracking in both the infill walls with window hole and those without window for the inter-story drift caused by seismic loads and the reference wind load. However, both types of infill walls experienced structural creaking when assessing the gust wind pressure recorded from previous typhoon monitoring. It is concluded that an underestimate of wind loads may contribute substantially to the cracking of frame CACB infill walls in low seismic fortification intensity coastal areas. Consequently, it is imperative to adopt wind pressure values derived from gust wind speeds in the design of CACB infill walls within frame structures. Finally, the future research directions of avoiding cracks in CACB filled walls were proposed. They were the material performance improving and building structure optimizing.

Keywords

Acknowledgement

This research was funded by Zhejiang Provincial Natural Science Foundation with grant number LGG20E080006 and the National Natural Science Foundation of China Youth Science Foundation Project with grant number 52009087/E0903. We appreciate the Taizhou Meteorological Bureau for providing the wind speed, wind direction and other meteorological data.

References

  1. Bouarroudj, M.A. and Boudaoud, Z. (2022), "Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models", Struct. Eng. Mech., 81(2), 131-146. https://doi.org/10.12989/sem.2022.81.2.131.
  2. Dautaj, A.D., Kadiri, Q. and Kabashi, N. (2018), "Experimental study on the contribution of masonry infill in the behavior of RC frame under seismic loading", Eng. Struct., 165, 27-37. https://doi.org/10.1016/j.engstruct.2018.03.013.
  3. Flanagan, R.D. and Bennett, R.M. (1999), "Bidirectional behavior of structural clay tile infilled frames", J. Struct. Eng., 125(3), 236-244. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(236).
  4. GB18306-2015 (2015), General Administration of Quality Supervision Inspection and Quarantine of China, Seismic Ground Motion Parameters Donation Map of China, China Standard Press, Beijing. (in Chinese)
  5. GB50009-2012 (2012), Load Code for the Design of Building Structure, Ministry of Housing and Urban-Rural Development of the Peoples Republic of China, China Construction Industry Press, Beijing. (in Chinese)
  6. GB50010-2010 (2015), Code for Design of Concrete Structure, Ministry of Housing and Urban-Rural Development of the People Republic of China, China Construction Industry Press, Beijing. (in Chinese)
  7. Gu, D., Kareem, A., Lu, X. and Cheng, Q. (2023), "A computational framework for the simulation of wind effects on buildings in a cityscape", J. Wind Eng. Ind. Aerod., 234(1), 105347. https://doi.org/10.1016/j.jweia.2023.105347.
  8. Huang M.F., Sun J.P., Wang Y.F., et al. (2020), "Multi-scale simulation of typhoon wind fields by coupling of weather research and forcasting model and large-eddy simulation", J. Build. Struct., 41(2), 63-70. https://doi.org/10.14006/j.jzjgxb.2018.0735.
  9. Huang, M.F., Li, Q., Chan, C.M., Lou, W.J., Kwok, K.C. and Li, G. (2015), "Performance-based design optimization of tall concrete framed structures subject to wind excitations", J. Wind Eng. Ind. Aerod., 139, 70-81. https://doi.org/10.1016/j.jweia.2015.01.005.
  10. Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review", J. Build. Eng., 33, 101582. https://doi.org/10.1016/j.jobe.2020.101582.
  11. Jiang, H., Liu, X. and Mao, J. (2015), "Full-scale experimental study on masonry infilled RC moment-resisting frames under cyclic loads", Eng. Struct., 91, 70-84. https://doi.org/10.1016/j.engstruct.2015.02.008.
  12. Jiang, R., Jiang, L., Hu, Y., Ye, J. and Zhou, L. (2020), "A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames", Struct. Eng. Mech., 74(6), 821-832. https://doi.org/10.12989/sem.2020.74.6.821. 
  13. Jiang, X.Q., Li, R.G., Li, Q., et al. (2018), "Research on the method of basic wind pressure in coastal areas with insufficient meteorological observation data: Taking Taizhou as an example", J. Taizhou Univ., 40(6), 50-57+63. https://doi.org/10.13853/j.cnki.issn.1672-3708.2018.06.009.
  14. Jin, X.Y., Chen, K., Tang, Y., et al. (2011), "New progress of research and application of wind engineering for buildings", Build. Struct., 41(11), 111-117. https://doi.org/10.19701/j.jzjg.2011.11.023.
  15. Kamaris, G.S., Skalomenos, K.A., Hatzigeorgiou, G.D. and Beskos, D.E. (2016), "Seismic damage estimation of in-plane regular steel/concrete composite moment resisting frames", Eng. Struct., 115, 67-77. https://doi.org/10.1016/j.engstruct.2016.01.053.
  16. Komur, M.A., Kara, M.E. and Deneme, I.O. (2020), "Infill wall effects on the dynamic characteristics of RC frame systems via operational modal analysis", Struct. Eng. Mech., 74(1), 121-128. https://doi.org/10.12989/sem.2020.74.1.121.
  17. Leng, Y., Fan, C. and Tang, H. (2013), "A comparison and analysis on response between wind and earthquake action on tall buildings", J. Yangzhou Univ. (Nat. Sci. Ed.), 16(3), 65-69. https://doi.org/10.19411/j.1007-824x.2013.03.016.
  18. Li, L., Zhang, J.W. and Li, Q.S. (2014), "Experimental investigation of characteristics of torsional wind loads on rectangular tall buildings", Struct. Eng. Mech., 49(1), 129-145. http://doi.org/10.12989/sem.2014.49.1.129.
  19. Li, R., Wang, Y., Lin, H., Du, H., Wang, C., Chen, X. and Huang, M. (2022), "A mesoscale CFD simulation study of basic wind pressure in complex terrain-a case study of Taizhou city", Appl. Sci., 12(20), 10481. https://doi.org/10.3390/app122010481.
  20. Li, Y. and Mau, S.T. (1997), "Learning from recorded earthquake motion of buildings", J. Struct. Eng., 123(1), 62-69. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:1(62).
  21. Lin, H., Zhu, B., Yuan, J., He, H., Li, R., Yu, J., ... & Xu, W. (2023), "Study on the impact of HTPP fibers on the mechanical properties of ceramsite concrete", Case Stud. Constr. Mater., 19, e02471. https://doi.org/10.1016/j.cscm.2023.e02471.
  22. Liu, Y., Li, H.N., Li, C. and Dong, T.Z. (2021), "Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue", Struct. Eng. Mech., 77(2), 197-215. https://doi.org/10.12989/sem.2021.77.2.197.
  23. Mainstone, R. (1971), "On the stiffnesses and strengths of infilled frames", Proc. Inst. Civil Eng., 49(2), 230. https://doi.org/10.1680/iicep.1971.6267.
  24. Mazza, F. (2019), "In-plane-out-of-plane non-linear model of masonry infills in the seismic analysis of RC-framed buildings", Earthq. Eng. Struct. Dyn., 48(4), 432-453. https://doi.org/10.1002/eqe.3143.
  25. Mi, K.H., Yu, W.H. and Bi, S.G. (2022), "Application of PKPM in water conservancy project frame structure design", China Water Power Electrif., 2022(3), 25-31+64. https://doi.org/10.16617/j.cnki.11-5543/TK.2022.03.06.
  26. Misir, I.S., Ozcelik, O., Girgin, S.C. and Yucel, U. (2016), "The behavior of infill walls in RC frames under combined bidirectional loading", J. Earthqu. Eng., 20(4), 559-586. https://doi.org/10.1080/13632469.2015.1104748.
  27. Mohammad, A.F., Khalid, F. and Khan, R.A. (2022), "Finite element micro-modelling of RC frames with variant configurations of infill masonry", Struct. Eng. Mech., 81(4), 395-409. https://doi.org/10.12989/sem.2022.81.4.395.
  28. Qi, X. and Pantazopoulou, S.J. (1991), "Response of RC frame under lateral loads", J. Struct. Eng., 117(4), 1167-1188. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:4(1167).
  29. Tan, Q., Wu, B., Shi, P., Xu, G., Wang, Z., Sun, J. and Lehman, D.E. (2021), "Experimental performance of a full-Scale spatial RC frame with buckling-restrained braces subjected to bidirectional loading", J. Struct. Eng., 147(3), 04020352. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002928.
  30. Tong, Y.S. and Qian, G.F. (1982), "Deformation behavior and bearing capacity of reinforced concrete frame with brick-filled walls", J. Xi'an Univ. Arch. Technol. (Nat. Sci. Ed.), 42(2), 1-21.
  31. Tong, Y.S. and Qian, G.F. (1982), "Experimental study on behavior of reinforced concrete frame with brick-filled walls under horizontal load", J. Xi'an Univ. Arch. Technol. (Nat. Sci. Ed.), 14(2), 1-13.
  32. Typhoon Webpage in National Meteorological Centre of China (2023), http://typhoon.nmc.cn/web.html.
  33. Wan, W., Bo, J.S., Li, X.B., et al. (2013), "Earthquake damage prediction method for highrise buildings based on PKPM program", World Earthq. Eng., 29(3), 139-144. https://doi.org/10.3969/j.issn.1007-6069.2013.03.021.
  34. Wang, Z.H. and Wang, M.F. (2016), "Research on damping property of reinforced concrete frame structures", Earthq. Eng. Eng. Dyn., 36(3), 92-101. https://doi.org/10.13197/j.eeev.2016.03.92.wangzh.012.
  35. Wu, C.B., Wang, J.X., Ji, X.D., Jiang, Q., He, J.J. and Liang, Y.S. (2021), "Spatial and temporal statistical characteristics of air density and its influence on basic wind pressure: A case study of Shandong province, eastern China", J. Beijing Forestry Univ., 43(5), 99-107. https://doi.org/10.12171/j.1000-1522.20210064.
  36. Wu, H.Q. (2013), "Application of Revit software to PKPM design of energy efficiency for power plant buildings", Eng. J. Wuhan Univ., 46(S1), 30-33.
  37. Yan, B.W., Huang, L. and Deng, L. (2010), "Approach of the collapses of RC frame structure school buildings", Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, 2010, 2653-2662. https://doi.org/10.1061/41096(366)249.
  38. Zhang, Y., Ni, Y.Q., Jia, X. and Wang, Y.W. (2023), "Identification of concrete surface damage based on probabilistic deep learning of images", Autom. Constr., 156(1), 105141. https://doi.org/10.1016/j.autcon.2023.105141.