과제정보
본 논문은 정부(2021년도 과학기술보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1F1A1063690).
참고문헌
- 고영태.최상옥 (2023), "정부 R&D 지원이 소부장 전문기업의 경영성과에 미치는 효과 연구: 산업기술혁신사업을 중심으로", 「기술혁신학회지」, 제26권 제2호, pp. 317-346.
- 권세훈.최성호.한상범 (2023), "소재.부품.장비 산업 지원정책의 평가와 시사점", 「경제발전연구」, 제29권 제2호, pp. 35-64
- 남춘호 (1998), "사회학적 연구에서 표본선택편의", 「한국사회학」, 제32권, pp. 99-136.
- 박원우.손승연.박해신.박혜상 (2010), "적정 표본크기 (sample size) 결정을 위한 제언", 「Seoul Journal of Industrial Relations」, 제21권, pp. 51-85.
- 안준모 (2022), "정부의 기술혁신 재정지원 정책효과에 대한 체계적 문헌연구", 「기술혁신연구」, 제30권 제1호, pp. 57-88.
- 유화선.김윤명.정도범 (2021), "정부 지원이 소재부품 중소기업 성장통 극복에 미치는 영향: PSM-DID 결합모형을 활용한 정책효과 분석", 「기술혁신학회지」, 제24권 제5호, pp. 871-890.
- 이석원.김준기.이영범.장경호.이민호 (2008), "정책효과분석과 선택편의: 중소기업 정책자금 지원사업에 대한 순차적 선택모형을 중심으로", 「한국행정학보」, 제42권 제1호, pp. 197-227.
- 채광기.윤병섭.하규수 (2011), "중소기업 정책자금 지원이 중소. 벤처기업 재무성과에 미치는 영향: 중소기업진흥공단 정책자금 지원을 중심으로", 「벤처창업연구」, 제6권 제3호, pp. 85-107. https://doi.org/10.16972/APJBVE.6.3.201109.85
- 최종민.황희영 (2022), "중소기업지원사업 수혜가 기업의 성과에 미치는 영향 분석: 소재.부품.장비산업 중소기업을 중심으로", 「기업과혁신연구」, 제45권 제4호, pp. 177-191. https://doi.org/10.22778/JCI.2022.45.4.177
- 표한형.최현호 (2018), "수출지원사업이 중소 제조업의 성과에 미치는 효과 분석", 「국제경제 연구」, 제24권 제3호, pp. 29-56.
- Angrist, J. D., & Krueger, A. B. (1991). "Does compulsory school attendance affect schooling and earnings?" The Quarterly Journal of Economics, Vol. 106, No. 4, pp. 979-1014. https://doi.org/10.2307/2937954
- Austin, P. C. (2009). "Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity score matched samples." Statistics in Medicine, Vol. 28, No. 25, pp. 3083-3107. https://doi.org/10.1002/sim.3697
- Benedetto, U., Head, S. J., Angelini, G. D., & Blackstone, E. H. (2018). "Statistical primer: propensity score matching and its alternatives." European Journal of Cardio-Thoracic Surgery, Vol. 53, No. 6, pp. 1112-1117. https://doi.org/10.1093/ejcts/ezy167
- Bernardi, F., & Ballarino, G. (2016). "Education, occupation and social origin: A comparative analysis of the transmission of socio-economic inequalities." Edward Elgar Publishing.
- Brand, J. E., & Xie, Y. (2010). "Who benefits most from college? Evidence for negative selection in heterogeneous economic returns to higher education." American sociological review, Vol. 75, No. 2, pp. 273-302. https://doi.org/10.1177/0003122410363567
- Breen, R., & Jonsson, J. O. (2007). "Explaining change in social fluidity: educational equalization and educational expansion in twentieth-century Sweden." American journal of sociology, Vol. 112, No. 6, pp. 1775-1810. https://doi.org/10.1086/508790
- Caliendo, M., & Kopeinig, S. (2008). "Some practical guidance for the implementation of propensity score matching." Journal of economic surveys, Vol. 22, No. 1, pp. 31-72. https://doi.org/10.1111/j.1467-6419.2007.00527.x
- Carneiro, P., Hansen, K. T., & Heckman, J. J. (2003). National Bureau of Economic Research Cambridge, Mass., USA.
- Carneiro, P., Heckman, J. J., & Vytlacil, E. (2010). "Evaluating marginal policy changes and the average effect of treatment for individuals at the margin." Econometrica, Vol. 78, No. 1, pp. 377-394. https://doi.org/10.3982/ECTA7089
- Grimmer, J., Messing, S., & Westwood, S. J. (2017). "Estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods." Political Analysis, Vol. 25, No. 4, pp. 413-434. https://doi.org/10.1017/pan.2017.15
- Heckman, J. J., Ichimura, H., & Todd, P. E. (1997). "Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme." The review of economic studies, Vol. 64, No. 4, pp. 605-654. https://doi.org/10.2307/2971733
- Heckman, J. J., Urzua, S., & Vytlacil, E. (2006). "Understanding instrumental variables in models with essential heterogeneity." The review of economics and statistics, Vol. 88, No. 3, pp. 389-432. https://doi.org/10.1162/rest.88.3.389
- Heinrich, C., Maffioli, A., & Vazquez, G. (2010). A primer for applying propensity-score matching.
- Hirano, K., Imbens, G. W., & Ridder, G. (2003). "Efficient estimation of average treatment effects using the estimated propensity score." Econometrica, Vol. 71, No. 4, pp. 1161-1189. https://doi.org/10.1111/1468-0262.00442
- Holland, P. W. (1986). "Statistics and causal inference." Journal of the American statistical Association, Vol. 81, No. 396, pp. 945-960. https://doi.org/10.1080/01621459.1986.10478354
- Hu, A. (2023). "Heterogeneous treatment effects analysis for social scientists: A review." Social Science Research, Vol. 109, pp. 102810.
- Levy, D. M., & Terleckyj, N. E. (1983). "Effects of government R&D on private R&D investment and productivity: a macroeconomic analysis." The Bell Journal of Economics, pp. 551-561.
- Netz, N. (2021). "Who benefits most from studying abroad? A conceptual and empirical overview." Higher Education, Vol. 82, No. 6, pp. 1049-1069. https://doi.org/10.1007/s10734-021-00760-1
- Rosenbaum, P. R., & Rubin, D. B. (1983). "Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome." Journal of the Royal Statistical Society: Series B (Methodological), Vol. 45, No. 2, pp. 212-218. https://doi.org/10.1111/j.2517-6161.1983.tb01242.x
- Spanos, Y. E. (2021). "Exploring heterogeneous returns to collaborative R&D: A marginal treatment effects perspective." Research Policy, Vol. 50, No. 5, pp. 104223.
- Stuart, E. A. (2010). "Matching methods for causal inference: A review and a look forward." Statistical science: a review journal of the Institute of Mathematical Statistics, Vol. 25, No. 1, pp. 1.
- Stuart, E. A., Huskamp, H. A., Duckworth, K., Simmons, J., Song, Z., Chernew, M. E., & Barry, C. L. (2014). "Using propensity scores in difference-in-differences models to estimate the effects of a policy change." Health Services and Outcomes Research Methodology, Vol. 14, pp. 166-182. https://doi.org/10.1007/s10742-014-0123-z
- Tsai, S.-L., & Xie, Y. (2008). "Returns to college education reexamined: individual treatment effects, selection bias, and sorting gain." Population Studies Center Research Report, 08-631.
- Varadhan, R., & Seeger, J. D. (2013). "Estimation and reporting of heterogeneity of treatment effects." In Developing a protocol for observational comparative effectiveness research: A user's guide: Agency for Healthcare Research and Quality (US).
- Williams, B. (1978). A sampler on sampling. New York: Wiley.
- Xie, Y., Brand, J. E., & Jann, B. (2012). "Estimating heterogeneous treatment effects with observational data." Sociological methodology, Vol. 42, No. 1, pp. 314-347. https://doi.org/10.1177/0081175012452652
- Zhou, X., & Xie, Y. (2019). "Marginal treatment effects from a propensity score perspective." Journal of Political Economy, Vol. 127, No. 6, pp. 3070-3084. https://doi.org/10.1086/702172
- Zhou, X., & Xie, Y. (2020). "Heterogeneous treatment effects in the presence of self-selection: a propensity score perspective." Sociological Methodology, Vol. 50, No. 1, pp. 350-385. https://doi.org/10.1177/0081175019862593