DOI QR코드

DOI QR Code

A study on Heterogeneous Policy Effects Based on Propensity Score Quartiles

성향점수 분위에 따른 이질적 정책효과 분석: 소재·부품·장비 R&D지원사업을 중심으로

  • 신경희 (중소벤처기업연구원, 성균관대학교 기술경영학과) ;
  • 이희상 (성균관대학교 기술경영학과)
  • Received : 2024.02.28
  • Accepted : 2024.04.08
  • Published : 2024.05.31

Abstract

This study aims to estimate policy effects that appear heterogeneously within the beneficiary group by matching the beneficiary and non-beneficiary groups based on propensity score quartiles and analyzing the effect of policy benefits on sales growth. To achieve this, 239 SMEs that participated in R&D support program for the manufacturing of materials, components, and equipment in 2020 were selected as the beneficiary group. The propensity scores of these companies were calculated and divided into eight quartiles for matching between the non-beneficiary and beneficiary groups. Subsequently, double difference analysis was used to calculate the sales growth rate attributable to policy support. The study found that the largest policy effect was observed in the lowest quartile group, and companies with high patent application rates and 3-year sales growth rates experienced significant policy effects. These findings suggest that propensity score quartile-based analysis can be effectively utilized to refine the criteria for selecting beneficiary companies and the scope of industrial policy support.

정책효과를 분석하는데 있어 가장 중요한 이슈 중 하나는 선택편의(selection bias)를 통제하는데 있다. 효율적으로 선택편의를 통제하기 위하여 성향점수 매칭을 통한 이중차분분석(PSM-DID)기법이 널리 사용되어오고 있으나, 이는 수혜집단과 비수혜집단에 포함된 표본들이 집단에 따라 동질적인 정책효과를 지닌다는 과감한 가정을 필요로 한다. 본 연구는 수혜집단 내에서 이질적으로 나타나는 정책효과를 추정해보고자 성향점수 분위에 따라 수혜집단과 비수혜집단을 매칭하여 정책수혜여부에 따른 매출성장효과를 분석하였다. 이를 위하여 2020년 수행된 소재부품장비 R&D지원사업에 참여한 239개 중소기업을 수혜집단으로 선정하였으며, 이들 기업의 성향점수를 산출한 뒤 8개 분위로 나누어 비수혜집단과 성향점수 매칭을 수행하였다. 이후 분위별 이중차분분석을 통해 정책지원으로 인한 매출성장률을 산출하였다. 그 결과 가장 낮은 분위의 집단에서 가장 큰 정책효과가 관찰되었으며, 3개년 매출 성장률과 특허출원건수가 높은 기업집단들이 탁월한 정책효과를 누린 것으로 나타났다. 연구의 결과는 성향점수 분위에 따른 이질적 정책효과 분석기법이 산업정책기획을 위한 수혜기업의 선정기준, 지원범위 등을 조정하는데 효과적으로 사용될 수 있음을 시사한다.

Keywords

Acknowledgement

본 논문은 정부(2021년도 과학기술보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1F1A1063690).

References

  1. 고영태.최상옥 (2023), "정부 R&D 지원이 소부장 전문기업의 경영성과에 미치는 효과 연구: 산업기술혁신사업을 중심으로", 「기술혁신학회지」, 제26권 제2호, pp. 317-346.
  2. 권세훈.최성호.한상범 (2023), "소재.부품.장비 산업 지원정책의 평가와 시사점", 「경제발전연구」, 제29권 제2호, pp. 35-64
  3. 남춘호 (1998), "사회학적 연구에서 표본선택편의", 「한국사회학」, 제32권, pp. 99-136.
  4. 박원우.손승연.박해신.박혜상 (2010), "적정 표본크기 (sample size) 결정을 위한 제언", 「Seoul Journal of Industrial Relations」, 제21권, pp. 51-85.
  5. 안준모 (2022), "정부의 기술혁신 재정지원 정책효과에 대한 체계적 문헌연구", 「기술혁신연구」, 제30권 제1호, pp. 57-88.
  6. 유화선.김윤명.정도범 (2021), "정부 지원이 소재부품 중소기업 성장통 극복에 미치는 영향: PSM-DID 결합모형을 활용한 정책효과 분석", 「기술혁신학회지」, 제24권 제5호, pp. 871-890.
  7. 이석원.김준기.이영범.장경호.이민호 (2008), "정책효과분석과 선택편의: 중소기업 정책자금 지원사업에 대한 순차적 선택모형을 중심으로", 「한국행정학보」, 제42권 제1호, pp. 197-227.
  8. 채광기.윤병섭.하규수 (2011), "중소기업 정책자금 지원이 중소. 벤처기업 재무성과에 미치는 영향: 중소기업진흥공단 정책자금 지원을 중심으로", 「벤처창업연구」, 제6권 제3호, pp. 85-107. https://doi.org/10.16972/APJBVE.6.3.201109.85
  9. 최종민.황희영 (2022), "중소기업지원사업 수혜가 기업의 성과에 미치는 영향 분석: 소재.부품.장비산업 중소기업을 중심으로", 「기업과혁신연구」, 제45권 제4호, pp. 177-191. https://doi.org/10.22778/JCI.2022.45.4.177
  10. 표한형.최현호 (2018), "수출지원사업이 중소 제조업의 성과에 미치는 효과 분석", 「국제경제 연구」, 제24권 제3호, pp. 29-56.
  11. Angrist, J. D., & Krueger, A. B. (1991). "Does compulsory school attendance affect schooling and earnings?" The Quarterly Journal of Economics, Vol. 106, No. 4, pp. 979-1014. https://doi.org/10.2307/2937954
  12. Austin, P. C. (2009). "Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity score matched samples." Statistics in Medicine, Vol. 28, No. 25, pp. 3083-3107. https://doi.org/10.1002/sim.3697
  13. Benedetto, U., Head, S. J., Angelini, G. D., & Blackstone, E. H. (2018). "Statistical primer: propensity score matching and its alternatives." European Journal of Cardio-Thoracic Surgery, Vol. 53, No. 6, pp. 1112-1117. https://doi.org/10.1093/ejcts/ezy167
  14. Bernardi, F., & Ballarino, G. (2016). "Education, occupation and social origin: A comparative analysis of the transmission of socio-economic inequalities." Edward Elgar Publishing.
  15. Brand, J. E., & Xie, Y. (2010). "Who benefits most from college? Evidence for negative selection in heterogeneous economic returns to higher education." American sociological review, Vol. 75, No. 2, pp. 273-302. https://doi.org/10.1177/0003122410363567
  16. Breen, R., & Jonsson, J. O. (2007). "Explaining change in social fluidity: educational equalization and educational expansion in twentieth-century Sweden." American journal of sociology, Vol. 112, No. 6, pp. 1775-1810. https://doi.org/10.1086/508790
  17. Caliendo, M., & Kopeinig, S. (2008). "Some practical guidance for the implementation of propensity score matching." Journal of economic surveys, Vol. 22, No. 1, pp. 31-72. https://doi.org/10.1111/j.1467-6419.2007.00527.x
  18. Carneiro, P., Hansen, K. T., & Heckman, J. J. (2003). National Bureau of Economic Research Cambridge, Mass., USA.
  19. Carneiro, P., Heckman, J. J., & Vytlacil, E. (2010). "Evaluating marginal policy changes and the average effect of treatment for individuals at the margin." Econometrica, Vol. 78, No. 1, pp. 377-394. https://doi.org/10.3982/ECTA7089
  20. Grimmer, J., Messing, S., & Westwood, S. J. (2017). "Estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods." Political Analysis, Vol. 25, No. 4, pp. 413-434. https://doi.org/10.1017/pan.2017.15
  21. Heckman, J. J., Ichimura, H., & Todd, P. E. (1997). "Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme." The review of economic studies, Vol. 64, No. 4, pp. 605-654. https://doi.org/10.2307/2971733
  22. Heckman, J. J., Urzua, S., & Vytlacil, E. (2006). "Understanding instrumental variables in models with essential heterogeneity." The review of economics and statistics, Vol. 88, No. 3, pp. 389-432. https://doi.org/10.1162/rest.88.3.389
  23. Heinrich, C., Maffioli, A., & Vazquez, G. (2010). A primer for applying propensity-score matching.
  24. Hirano, K., Imbens, G. W., & Ridder, G. (2003). "Efficient estimation of average treatment effects using the estimated propensity score." Econometrica, Vol. 71, No. 4, pp. 1161-1189. https://doi.org/10.1111/1468-0262.00442
  25. Holland, P. W. (1986). "Statistics and causal inference." Journal of the American statistical Association, Vol. 81, No. 396, pp. 945-960. https://doi.org/10.1080/01621459.1986.10478354
  26. Hu, A. (2023). "Heterogeneous treatment effects analysis for social scientists: A review." Social Science Research, Vol. 109, pp. 102810.
  27. Levy, D. M., & Terleckyj, N. E. (1983). "Effects of government R&D on private R&D investment and productivity: a macroeconomic analysis." The Bell Journal of Economics, pp. 551-561.
  28. Netz, N. (2021). "Who benefits most from studying abroad? A conceptual and empirical overview." Higher Education, Vol. 82, No. 6, pp. 1049-1069. https://doi.org/10.1007/s10734-021-00760-1
  29. Rosenbaum, P. R., & Rubin, D. B. (1983). "Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome." Journal of the Royal Statistical Society: Series B (Methodological), Vol. 45, No. 2, pp. 212-218. https://doi.org/10.1111/j.2517-6161.1983.tb01242.x
  30. Spanos, Y. E. (2021). "Exploring heterogeneous returns to collaborative R&D: A marginal treatment effects perspective." Research Policy, Vol. 50, No. 5, pp. 104223.
  31. Stuart, E. A. (2010). "Matching methods for causal inference: A review and a look forward." Statistical science: a review journal of the Institute of Mathematical Statistics, Vol. 25, No. 1, pp. 1.
  32. Stuart, E. A., Huskamp, H. A., Duckworth, K., Simmons, J., Song, Z., Chernew, M. E., & Barry, C. L. (2014). "Using propensity scores in difference-in-differences models to estimate the effects of a policy change." Health Services and Outcomes Research Methodology, Vol. 14, pp. 166-182. https://doi.org/10.1007/s10742-014-0123-z
  33. Tsai, S.-L., & Xie, Y. (2008). "Returns to college education reexamined: individual treatment effects, selection bias, and sorting gain." Population Studies Center Research Report, 08-631.
  34. Varadhan, R., & Seeger, J. D. (2013). "Estimation and reporting of heterogeneity of treatment effects." In Developing a protocol for observational comparative effectiveness research: A user's guide: Agency for Healthcare Research and Quality (US).
  35. Williams, B. (1978). A sampler on sampling. New York: Wiley.
  36. Xie, Y., Brand, J. E., & Jann, B. (2012). "Estimating heterogeneous treatment effects with observational data." Sociological methodology, Vol. 42, No. 1, pp. 314-347. https://doi.org/10.1177/0081175012452652
  37. Zhou, X., & Xie, Y. (2019). "Marginal treatment effects from a propensity score perspective." Journal of Political Economy, Vol. 127, No. 6, pp. 3070-3084. https://doi.org/10.1086/702172
  38. Zhou, X., & Xie, Y. (2020). "Heterogeneous treatment effects in the presence of self-selection: a propensity score perspective." Sociological Methodology, Vol. 50, No. 1, pp. 350-385. https://doi.org/10.1177/0081175019862593