DOI QR코드

DOI QR Code

Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production

  • Sheena Kim (Department of Animal Biotechnology, Dankook University) ;
  • Jinho Cho (Division of Food and Animal Science, Chungbuk National University) ;
  • Gi Beom Keum (Department of Animal Biotechnology, Dankook University) ;
  • Jinok Kwak (Department of Animal Biotechnology, Dankook University) ;
  • Hyunok Doo (Department of Animal Biotechnology, Dankook University) ;
  • Yejin Choi (Department of Animal Biotechnology, Dankook University) ;
  • Juyoun Kang (Department of Animal Biotechnology, Dankook University) ;
  • Haram Kim (Department of Animal Biotechnology, Dankook University) ;
  • Yeongjae Chae (Department of Animal Biotechnology, Dankook University) ;
  • Eun Sol Kim (Department of Animal Biotechnology, Dankook University) ;
  • Minho Song (Division of Animal and Dairy Science, Chungnam National University) ;
  • Hyeun Bum Kim (Department of Animal Biotechnology, Dankook University)
  • 투고 : 2024.08.03
  • 심사 : 2024.08.20
  • 발행 : 2024.09.30

초록

A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A3059910).

참고문헌

  1. Kogut MH, Arsenault RJ. Editorial: gut health: the new paradigm in food animal production. Front Vet Sci. 2016;3:71. https://doi.org/10.3389/fvets.2016.00071
  2. Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 2017;3:331-43. https://doi.org/10.1016/j.aninu.2017.06.007
  3. Ducatelle R, Goossens E, De Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, et al. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res. 2018;49:43. https://doi.org/10.1186/s13567-018-0538-6
  4. Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018;4:187-96. https://doi.org/10.1016/j.aninu.2017.12.004
  5. Yang Z, Liao SF. Physiological effects of dietary amino acids on gut health and functions of swine. Front Vet Sci. 2019;6:169. https://doi.org/10.3389/fvets.2019.00169
  6. Kogut MH, Zhang G. Gut microbiota, immunity, and health in production animals. Cham: Springer; 2022.
  7. Suryanarayana MVAN, Sreedhar S, Babu BJ. Interactive effect of prebiotic (oligofructose) and probiotic (saccharomyces) feed additives on nutrient utilization, growth, feed conversion, and faecal microbiota population in pigs. Anim Sci Rep. 2013;7:107-13.
  8. Peng J, Tang Y, Huang Y. Gut health: the results of microbial and mucosal immune interactions in pigs. Anim Nutr. 2021;7:282-94. https://doi.org/10.1016/j.aninu.2021.01.001
  9. Szabo C, Kachungwa Lugata J, Ortega ADSV. Gut health and influencing factors in pigs. Animals. 2023;13:1-28. https://doi.org/10.3390/ani13081350
  10. Tuohy KM, Rouzaud GCM, Bruck WM, Gibson GR. Modulation of the human gut microflora towards improved health using prebiotics - assessment of efficacy. Curr Pharm Des. 2005;11:75-90. https://doi.org/10.2174/1381612053382331
  11. Patil AK, Kumar S, Verma AK, Baghel RPS. Probiotics as feed additives in weaned pigs: a review. Livest Res Int. 2015;3:31-9.
  12. Liao SF. Invited review: maintain or improve piglet gut health around weanling: the fundamental effects of dietary amino acids. Animals. 2021;11:1-16. https://doi.org/10.3390/ani11041110
  13. Choct M. Managing gut health through nutrition. Br Poult Sci. 2009;50:9-15. https://doi.org/10.1080/00071660802538632
  14. de Lange CFM, Pluske J, Gong J, Nyachoti CM. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest Sci. 2010;134:124-34. https://doi.org/10.1016/j.livsci.2010.06.117
  15. Kim S, Choi J, Kim ES, Keum GB, Doo H, Kwak J, et al. Assessing the relationship between muscle-to-fat ratio in pork belly and boston butt using magnetic resonance imaging. Korean J Agric Sci. 2024;51:187-92. https://doi.org/10.7744/kjoas.510209
  16. Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, et al. Understanding the diversity and roles of the ruminal microbiome. J Microbiol. 2024;62:217-30. https://doi.org/10.1007/s12275-024-00121-4
  17. Shim YH, Shinde PL, Choi JY, Kim JS, Seo DK, Pak JI, et al. Evaluation of multi-microbial probiotics produced by submerged liquid and solid substrate fermentation methods in broilers. Asian-Australas J Anim Sci. 2010;23:521-9. https://doi.org/10.5713/ajas.2010.90446
  18. Liu WC, Ye M, Liao JH, Zhao ZH, Kim IH, An LL, et al. Application of complex probiotics in swine nutrition - a review. Ann Anim Sci. 2018;18:335-50. https://doi.org/10.2478/aoas2018-0005
  19. Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, et al. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023;9:5. https://doi.org/10.1186/s40813-022-00295-6
  20. Auclair E. Yeast as an example of the mode of action of probiotics in monogastric and ruminant species. In: Brutau J, editor. Feed manufacturing in the mediterranean region. Improving safety: from feed to food. Zaragoza: CIHEAM; 2001. p. 45-53.
  21. Suarez C, Guevara CA. Probiotic use of yeast Saccharomyces cerevisiae in animal feed. Res J Zool. 2018;1:1000103.
  22. Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-strain probiotics: synergy among isolates enhances biological activities. Biology. 2021;10:1-20. https://doi.org/10.3390/biology10040322
  23. Lambo MT, Chang X, Liu D. The recent trend in the use of multistrain probiotics in livestock production: an overview. Animals. 2021;11:1-15. https://doi.org/10.3390/ani11102805
  24. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365-78. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  25. Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC. Monostrain, multistrain and multispecies probiotics: a comparison of functionality and efficacy. Int J Food Microbiol. 2004;96:219-33. https://doi.org/10.1016/j.ijfoodmicro.2004.05.012
  26. Wang H, Yu SJ, Kim IH. Evaluation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emission, and faecal score on weaning pigs supplement with and without probiotics complex supplementation in different level of zinc oxide. Animals. 2023;13:1-10. https://doi.org/10.3390/ani13030381
  27. Kang J, Lee JJ, Cho JH, Choe J, Kyoung H, Kim SH, et al. Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs. J Anim Sci Technol. 2021;63:520-30. https://doi.org/10.5187/jast.2021.e44
  28. Wagner DG, Quinonez J, Bush LJ. The effect of corn- or wheat-based diets and yeast culture on performance, ruminal pH, and volatile fatty acids in dairy calves. Agri Practice. 1990;11:7-9,11,12.
  29. Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte JJ, Goulet J, et al. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J Anim Sci. 2009;87:922-34. https://doi.org/10.2527/jas.2008-0919
  30. Elghandour MMY, Tan ZL, Abu Hafsa SH, Adegbeye MJ, Greiner R, Ugbogu EA, et al. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review. J Appl Microbiol. 2020;128:658-74. https://doi.org/10.1111/jam.14416
  31. Alugongo GM, Xiao J, Wu Z, Li S, Wang Y, Cao Z. Review: utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J Anim Sci Biotechnol. 2017;8:34. https://doi.org/10.1186/s40104-017-0165-5
  32. Ogbuewu IP, Okoro VM, Mbajiorgu EF, Mbajiorgu CA. Yeast (Saccharomyces cerevisiae) and its effect on production indices of livestock and poultry-a review. Comp Clin Pathol 2019;28:669-77. https://doi.org/10.1007/s00580-018-2862-7
  33. Vohra A, Syal P, Madan A. Probiotic yeasts in livestock sector. Anim Feed Sci Technol. 2016;219:31-47. https://doi.org/10.1016/j.anifeedsci.2016.05.019
  34. Desnoyers M, Giger-Reverdin S, Bertin G, Duvaux-Ponter C, Sauvant D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci. 2009;92:1620-32. https://doi.org/10.3168/jds.2008-1414
  35. Mathew AG, Chattin SE, Robbins CM, Golden DA. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J Anim Sci. 1998;76:2138-45. https://doi.org/10.2527/1998.7682138x
  36. van Heugten E, Funderburke DW, Dorton KL. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J Anim Sci. 2003;81:1004-12. https://doi.org/10.2527/2003.8141004x
  37. Shen YB, Piao XS, Kim SW, Wang L, Liu P, Yoon I, et al. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J Anim Sci. 2009;87:2614-24. https://doi.org/10.2527/jas.2008-1512
  38. Li J, Li D, Gong L, Ma Y, He Y, Zhai H. Effects of live yeast on the performance, nutrient digestibility, gastrointestinal microbiota and concentration of volatile fatty acids in weanling pigs. Arch Anim Nutr. 2006;60:277-88. https://doi.org/10.1080/17450390600785343
  39. Price KL, Totty HR, Lee HB, Utt MD, Fitzner GE, Yoon I, et al. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection. J Anim Sci. 2010;88:3896-908. https://doi.org/10.2527/jas.2009-2728
  40. Trevisi P, Latorre R, Priori D, Luise D, Archetti I, Mazzoni M, et al. Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal. 2017;11:33-44. https://doi.org/10.1017/S1751731116001178
  41. Spriet SM, Decuypere JA, Henderickx HK. Effect of Bacillus toyoi (Toyocerin) on the gastro intestinal microflora, concentration of some bacterial metabolites, digestibility of the nutrients and the small intestinal mean retention time in pigs. In Proceedings of First Forum for Applied Biotechnology; 1987; Gent, Belgium. p.1673-83.
  42. Czerucka D, Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect. 2002;4:733-9. https://doi.org/10.1016/S1286-4579(02)01592-7
  43. Buts JP, Bernasconi P, Van Craynest MP, Maldague P, De Meyer R. Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr Res. 1986;20:192-6. https://doi.org/10.1203/00006450-198602000-00020
  44. Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to Clostridium difficile toxin A in mice. Infect Immun. 2001;69:2762-5. https://doi.org/10.1128/iai.69.4.2762-2765.2001
  45. Majtan J, Kogan G, Kovacova E, Bilikova K, Simuth J. Stimulation of TNF-α release by fungal cell wall polysaccharides. Z Naturforsch C J Biosci. 2005;60:921-6. https://doi.org/10.1515/znc-2005-11-1216
  46. Broadway PR, Carroll JA, Sanchez NCB. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. Microorganisms. 2015;3:417-27. https://doi.org/10.3390/microorganisms3030417
  47. Ruiz-Herrera J. Fungal cell wall: structure, synthesis, and assembly. Boca Raton, FL: CRC Press; 1991.
  48. Li J, Li DF, Xing JJ, Cheng ZB, Lai CH. Effects of β-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J Anim Sci. 2006;84:2374-81. https://doi.org/10.2527/jas.2004-541
  49. Song M, di Luzio NR. Yeast glucan and immunotherapy of infectious diseases. Front Biol. 1979;48:533-47.
  50. Kogan G, Kocher A. Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest Sci. 2007;109:161-5. https://doi.org/10.1016/j.livsci.2007.01.134
  51. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by β-glucans. Physiol Behav. 2008;94:276-84. https://doi.org/10.1016/j.physbeh.2007.11.045
  52. Ofek I, Mirelman D, Sharon N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature. 1977;265:623-5. https://doi.org/10.1038/265623a0
  53. Gedek BR. Interaktionen zwischen lebenden Hefezellen und darmpathogenen Escherichiacoli-Keimen. In: Muller J, Ottenjann R, Seifert J, editors. Okosystem darm: morphologie, mikrobiologie, immunologie klinik und therapie akuter und chronischer entzundlicher Darmerkrankungen. Berlin: Springer-Verlag; 1989. p. 135-9.
  54. Castagliuolo I, Riegler MF, Valenick L, LaMont JT, Pothoulakis C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun. 1999;67:302-7. https://doi.org/10.1128/iai.67.1.302-307.1999
  55. Davis ME, Maxwell CV, Erf GF, Brown DC, Wistuba TJ. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J Anim Sci. 2004;82:1882-91. https://doi.org/10.2527/2004.8261882x
  56. Zanello G, Berri M, Dupont J, Sizaret PY, D'Inca R, Salmon H, et al. Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLOS ONE. 2011;6:e18573. https://doi.org/10.1371/journal.pone.0018573
  57. Trevisi P, Colombo M, Priori D, Fontanesi L, Galimberti G, Calo G, et al. Comparison of three patterns of feed supplementation with live Saccharomyces cerevisiae yeast on postweaning diarrhea, health status, and blood metabolic profile of susceptible weaning pigs orally challenged with Escherichia coli F4ac. J Anim Sci. 2015;93:2225-33. https://doi.org/10.2527/jas.2014-8539
  58. Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol. 2003;17:741-54. https://doi.org/10.1016/S1521-6918(03)00052-0
  59. Lu X, Zhang M, Zhao L, Ge K, Wang Z, Jun L, et al. Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. J Microbiol Biotechnol. 2018;28:1791-9. https://doi.org/10.4014/jmb.1807.07026
  60. Choi JY, Kim JS, Ingale SL, Kim KH, Shinde PL, Kwon IK, et al. Effect of potential multimicrobe probiotic product processed by high drying temperature and antibiotic on performance of weanling pigs. J Anim Sci. 2011;89:1795-804. https://doi.org/10.2527/jas.2009-2794
  61. Choi JY, Shinde PL, Ingale SL, Kim JS, Kim YW, Kim KH, et al. Evaluation of multi-microbe probiotics prepared by submerged liquid or solid substrate fermentation and antibiotics in weaning pigs. Livest Sci. 2011;138:144-51. https://doi.org/10.1016/j.livsci.2010.12.015
  62. Choi Y, Goel A, Hosseindoust A, Lee S, Kim K, Jeon S, et al. Effects of dietary supplementation of Ecklonia cava with or without probiotics on the growth performance, nutrient digestibility, immunity and intestinal health in weanling pigs. Ital J Anim Sci. 2016;15:62-8. https://doi.org/10.1080/1828051X.2015.1128685
  63. Sampath V, Duk Ha B, Kibria S, Kim IH. Effect of low-nutrient-density diet with probiotic mixture (Bacillus subtilis ms1, B. Licheniformis SF5-1, and Saccharomyces cerevisiae) supplementation on performance of weaner pigs. J Anim Physiol Anim Nutr. 2022;106:61-8. https://doi.org/10.1111/jpn.13544
  64. Chen YJ, Min BJ, Cho JH, Kwon OS, Son KS, Kim HJ, et al. Effects of dietary bacillus-based probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in finishing pigs. Asian-Australas J Anim Sci. 2006;19:587-92. https://doi.org/10.5713/ajas.2006.587
  65. Hung ATY, Su TM, Liao CW, Lu JJ. Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian J Anim Vet Adv. 2008;3:431-6. https://doi.org/10.3923/ajava.2008.431.436
  66. Wang H, Ha BD, Kim IH. Effects of probiotics complex supplementation in low nutrient density diet on growth performance, nutrient digestibility, faecal microbial, and faecal noxious gas emission in growing pigs. Ital J Anim Sci. 2021;20:163-70. https://doi.org/10.1080/1828051X.2020.1801358
  67. Ko SY, Yang CJ. Effect of green tea probiotics on the growth performance, meat quality and immune response in finishing pigs. Asian-Australas J Anim Sci. 2008;21:1339-47. https://doi.org/10.5713/ajas.2008.70597
  68. Pollmann DS, Danielson DM, Peo ER Jr. Effects of microbial feed additives on performance of starter and growing-finishing pigs. J Anim Sci. 1980;51:577-81. https://doi.org/10.2527/jas1980.513577x
  69. Giang HH. Impact of bacteria and yeast with probiotic properties on performance, digestibility, health status and gut environment of growing pigs in Vietnam [Ph.D. dissertation]. Uppsala: Swedish University of Agricultural Sciences; 2010.
  70. Giang HH, Viet TQ, Ogle B, Lindberg JE. Effects of supplementation of probiotics on the performance, nutrient digestibility and faecal microflora in growing-finishing pigs. Asian-Australas J Anim Sci. 2011;24:655-61. https://doi.org/10.5713/ajas.2011.10238
  71. Ross RP, Desmond C, Fitzgerald GF, Stanton C. Overcoming the technological hurdles in the development of probiotic foods. J Appl Microbiol. 2005;98:1410-7. https://doi.org/10.1111/j.1365-2672.2005.02654.x
  72. To BCS, Etzel MR. Survival of Brevibacterium linens (ATCC 9174) after spray drying, freeze drying, or freezing. J Food Sci. 1997;62:167-70. https://doi.org/10.1111/j.1365-2621.1997.tb04392.x
  73. Kim DW, Choi YH, Kim JE, Cho ES, Jung HJ, Oh SM, et al. Effects of complex probiotic supplementation on growth performance, nutrient digestibility, blood metabolites, noxious gas and fecal microflora in weaning pigs. J Korea Acad Ind Coop Soc. 2020;21:266-73. https://doi.org/10.5762/KAIS.2020.21.5.266
  74. Hu J, Lu W, Wang C, Zhu R, Qiao J. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-Australas J Anim Sci. 2008;21:1635-41. https://doi.org/10.5713/ajas.2008.80032
  75. Aguilar CN, Contreras-Esquivel JC, Rodriguez R, Prado LA, Loera O. Differences in fungal enzyme productivity in submerged and solid state cultures. Food Sci Biotechnol. 2004;13:109-13.
  76. Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction. Microorganisms. 2019;7:19. https://doi.org/10.3390/microorganisms7010019
  77. Tonheim SK, Nordgreen A, Hogoy I, Hamre K, Ronnestad I. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients. Aquaculture. 2007;262:426-35. https://doi.org/10.1016/j.aquaculture.2006.10.030
  78. Fouhse JM, Zijlstra RT, Willing BP. The role of gut microbiota in the health and disease of pigs. Anim Front. 2016;6:30-6. https://doi.org/10.2527/af.2016-0031
  79. Swanson KS. From the editor: gut microbiota, diet, and health: application to livestock and companion animals. Anim Front. 2016;6:4-7. https://doi.org/10.2527/af.2016-0027
  80. Fuller R. Probiotics: the scientific basis. Dordrecht: Springer Science+Business Media; 1992.
  81. Chaucheyras-Durand F, Durand H. Probiotics in animal nutrition and health. Benef Microbes. 2010;1:3-9. https://doi.org/10.3920/BM2008.1002
  82. Chaucheyras-Durand F, Walker ND, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Technol. 2008;145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  83. Demeckova V, Kelly D, Coutts AGP, Brooks PH, Campbell A. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows. Int J Food Microbiol. 2002;79:85-97. https://doi.org/10.1016/S0168-1605(02)00182-4
  84. Le Bon M, Davies HE, Glynn C, Thompson C, Madden M, Wiseman J, et al. Influence of probiotics on gut health in the weaned pig. Livest Sci. 2010;133:179-81. https://doi.org/10.1016/j.livsci.2010.06.058
  85. Kim JS, Hosseindoust A, Lee SH, Choi YH, Kim MJ, Lee JH, et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal. 2017;11:45-53. https://doi.org/10.1017/S1751731116001166
  86. Czech A, Smolczyk A, Ognik K, Wlazlo L, Nowakowicz-Debek B, Kiesz M. Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Res Vet Sci. 2018;119:221-7. https://doi.org/10.1016/j.rvsc.2018.06.007
  87. Flickinger EA, Van Loo J, Fahey GC. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr. 2003;43:19-60. https://doi.org/10.1080/10408690390826446
  88. Giannenas I, Doukas D, Karamoutsios A, Tzora A, Bonos E, Skoufos I, et al. Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Anim Feed Sci Technol. 2016;220:159-67. https://doi.org/10.1016/j.anifeedsci.2016.08.003
  89. Adewole DI, Kim IH, Nyachoti CM. Gut health of pigs: challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - a review. Asian-Australas J Anim Sci. 2016;29:909-24. https://doi.org/10.5713/ajas.15.0795
  90. Broad A, Jones DEJ, Kirby JA. Toll-like receptor (TLR) response tolerance: a key physiological "damage limitation" effect and an important potential opportunity for therapy. Curr Med Chem. 2006;13:2487-502. https://doi.org/10.2174/092986706778201675
  91. Jensen BB. The impact of feed additives on the microbial ecology of the gut in young pigs. J Anim Feed Sci. 1998;7:45-64. https://doi.org/10.22358/jafs/69955/1998
  92. Lv CH, Wang T, Regmi N, Chen X, Huang K, Liao SF. Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature. J Anim Physiol Anim Nutr. 2015;99:1161-71. https://doi.org/10.1111/jpn.12326
  93. Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, et al. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci. 2017;95:2627-39. https://doi.org/10.2527/jas.2016.1243
  94. Hampson DJ. Alterations in piglet small intestinal structure at weaning. Res Vet Sci. 1986;40:32-40. https://doi.org/10.1016/s0034-5288(18)30482-x
  95. Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6:17-39. https://doi.org/10.1079/AHR2005105
  96. Guttman JA, Li Y, Wickham ME, Deng W, Vogl AW, Finlay BB. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol. 2006;8:634-45. https://doi.org/10.1111/j.1462-5822.2005.00656.x
  97. Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci. 2009;87:E101-8. https://doi.org/10.2527/jas.2008-1339
  98. Zhao L, Luo L, Jia W, Xiao J, Huang G, Tian G, et al. Serum diamine oxidase as a hemorrhagic shock biomarker in a rabbit model. PLOS ONE. 2014;9:e102285. https://doi.org/10.1371/journal.pone.0102285
  99. Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod Sci. 1997;51:215-36. https://doi.org/10.1016/S0301-6226(97)00057-2
  100. Moreto M, Perez-Bosque A. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa. J Anim Sci. 2009;87:E92-100. https://doi.org/10.2527/jas.2008-1381
  101. Gao X, Wang X, Pham TH, Feuerbacher LA, Lubos ML, Huang M, et al. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe. 2013;13:87-99. https://doi.org/10.1016/j.chom.2012.11.010
  102. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev. 2007;87:545-64. https://doi.org/10.1152/physrev.00012.2006
  103. Mason KL, Huffnagle GB, Noverr MC, Kao JY. Overview of gut immunology. In: Huffnagle GB, Noverr MC, editors. GI microbiota and regulation of the immune system. New York, NY: Springer; 2008.
  104. Liu Y. Fatty acids, inflammation and intestinal health in pigs. J Anim Sci Biotechnol. 2015;6:41. https://doi.org/10.1186/s40104-015-0040-1
  105. Phaengphairee P, Boontiam W, Wealleans A, Hong J, Kim YY. Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Vet Res. 2023;19:7. https://doi.org/10.1186/s12917-022-03550-8
  106. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012;12:821-32. https://doi.org/10.1038/nri3322
  107. Huang J, Guerrero A, Parker E, Strum JS, Smilowitz JT, German JB, et al. Site-specific glycosylation of secretory immunoglobulin a from human colostrum. J Proteome Res. 2015;14:1335-49. https://doi.org/10.1021/pr500826q
  108. Kim KS, Lim JC, Shin MS, Choi YI, Lee SC. Effect of dietary combined probiotics (AnyLac, ®) supplementation contained with Phaffia rhodozyma on the growth performances and meat quality of pigs. J Anim Sci Technol. 2008;50:657-66. https://doi.org/10.5187/JAST.2008.50.5.657
  109. Liu T, Su B, Wang J, Zhang C, Shan A. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. J Northeast Agric Univ. 2013;20:57-63. https://doi.org/10.1016/S1006-8104(14)60048-9
  110. Rybarczyk A, Romanowski M, Karamucki T, Ligocki M. The effect of bokashi probiotic on pig carcass characteristics and meat quality. FleischWirtsch Int. 2016;1:74-7.
  111. Servier Medical Art. Smart Servier Medical Art [Internet]. 2024 [cited 2024 Aug 1]. https://smart.servier.com/2024
  112. Freepik. Graphic resources [Internet]. 2024 [cited 2024 Aug 1]. https://www.freepik.com/2024
  113. Kim KH, Ingale SL, Kim JS, Lee SH, Lee JH, Kwon IK, et al. Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Anim Feed Sci Technol. 2014;196:88-95. https://doi.org/10.1016/j.anifeedsci.2014.06.012