DOI QR코드

DOI QR Code

Potential use of dried persimmon (Diospyros kaki) byproducts as feed sources for ruminants

  • Sang Moo Lee (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Tabita Dameria Marbun (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Eun Joong Kim (Department of Animal Science and Biotechnology, Kyungpook National University)
  • Received : 2023.07.07
  • Accepted : 2023.08.04
  • Published : 2024.07.31

Abstract

The aim of this study was to evaluate the chemical composition, in vitro digestibility, and palatability of dried persimmon byproducts (persimmon peel [PP] and damaged whole persimmons [WP]) ensiled with rice straw in different mixing ratios. PP and WP were ensiled with rice straw at ratios of 3:7 (PP3R7, WP3R7), 5:5 (PP5R5, WP5R5), 7:3 (PP7R3, WP7R3), and 8:2 (PP8R2, WP8R2) for 70 d. WP3R7 had the highest (p < 0.05) crude protein and lactate contents compared to the other combinations. On the other hand, PP3R7 and PP8R2 had lower concentrations of neutral and acid-detergent fibers (p < 0.05) and produced lower amounts of ammonia-N (p < 0.05). The silages were compared to rice straw silage (RS), maize silage (MS), whole-crop rye silage (WCRS), and sorghum-sudangrass silage (SSGS) during an in vitro study. The results showed that PP8R2 and WP7R3 had higher (p < 0.05) dry matter digestibility values than RS, MS, WCRS, and SSGS in a 6 h incubation period. In addition, a palatability test of the silages was conducted on Hanwoo cattle, goats, and deer, using the cafeteria method. The palatability index rate of PP7R3 was the highest (p < 0.05) for the goats and the Hanwoo cattle, whereas PP8R2 had the highest (p < 0.05) rate for the deer and the Hanwoo cattle. In conclusion, dried persimmon byproducts in the form of PP and WPs can be used as ruminant feed when ensiled with RS at ratios of 7:3 and 8:2.

Keywords

Acknowledgement

The authors greatly acknowledged the technical support by Drs. Jaeyong Song and Jae Hun Lee.

References

  1. Du Y, Ge Y, Chang J. Global strategies to minimize environmental impacts of ruminant production. Annu Rev Anim Biosci. 2022;10:227-40. https://doi.org/10.1146/annurevanimal-020420-043152 
  2. Salami SA, Luciano G, O'Grady MN, Biondi L, Newbold CJ, Kerry JP, et al. Sustainability of feeding plant by-products: a review of the implications for ruminant meat production. Anim Feed Sci Technol. 2019;251:37-55. https://doi.org/10.1016/j.anifeedsci.2019.02.006 
  3. Wilkinson JM. Re-defining efficiency of feed use by livestock. Animal. 2011;5:1014-22. https://doi.org/10.1017/S175173111100005X 
  4. Oltjen JW, Beckett JL. Role of ruminant livestock in sustainable agricultural systems. J Anim Sci. 1996;74:1406-9. https://doi.org/10.2527/1996.7461406x 
  5. Correddu F, Caratzu MF, Lunesu MF, Carta S, Pulina G, Nudda A. Grape, pomegranate, olive, and tomato by-products fed to dairy ruminants improve milk fatty acid profile without depressing milk production. Foods. 2023;12:865. https://doi.org/10.3390/foods12040865 
  6. Lee SM, Kim IH, Choi YM. Effects of persimmon peel supplementation on pork quality, palatability, fatty acid composition, and cholesterol level. J Anim Sci Technol. 2016;58:32. https://doi.org/10.1186/s40781-016-0114-4 
  7. Oh ST, Zheng L, Shin YK, An BK, Kang CW. Effects of dietary persimmon peel and its ethanol extract on the production performance and liver lipids in the late stage of egg production in laying hens. Asian-Australas J Anim Sci. 2013;26:260-5. https://doi.org/10.5713/ajas.2012.12487 
  8. Abdelazeem S, Takeda K, Kurosu K, Uyeno Y. Fermentative quality and animal acceptability of ensiled persimmon skin with absorbents for practical use in ruminant feed. Animals. 2020;10:612. https://doi.org/10.3390/ani10040612 
  9. Fitri A, Obitsu T, Sugino T, Jayanegara A. Ensiling of total mixed ration containing persimmon peel: evaluation of chemical composition and in vitro rumen fermentation profiles. Anim Sci J. 2020;91:e13403. https://doi.org/10.1111/asj.13403 
  10. Gorinstein S, Zachwieja Z, Folta M, Barton H, Piotrowicz J, Zemser M, et al. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J Agric Food Chem. 2001;49:952-7. https://doi.org/10.1021/jf000947k 
  11. Taira S. Astringency in persimmon. In: Linskens HF, Jackson JF, editors. Fruit analysis. Berlin, Heidelberg: Springer; 1995. p. 97-110. 
  12. Redpath S, George AP. Health and medicinal benefits of persimmon fruit: a review. Adv Hortic Sci. 2008;22:244-9. https://doi.org/10.1400/100649 
  13. Van Vlierberghe C, Chiboubi A, Carrere H, Bernet N, Santa Catalina G, Frederic S, et al. Improving the storage of cover crops by co-ensiling with different waste types: effect on fermentation and effluent production. Waste Manag. 2022;154:136-45. https://doi.org/10.1016/j.wasman.2022.10.002 
  14. Sarnklong C, Cone JW, Pellikaan W, Hendriks WH. Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian-Australas J Anim Sci. 2010;23:680-92. https://doi.org/10.5713/ajas.2010.80619 
  15. Marbun TD, Lee K, Song J, Kwon CH, Yoon D, Lee SM, et al. Effect of lactic acid bacteria on the nutritive value and in vitro ruminal digestibility of maize and rice straw silage. Appl Sci. 2020;10:7801. https://doi.org/10.3390/app10217801 
  16. Du G, Zhang G, Shi J, Zhang J, Ma Z, Liu X, et al. Keystone taxa Lactiplantibacillus and Lacticaseibacillus directly improve the ensiling performance and microflora profile in co-ensiling cabbage byproduct and rice straw. Microorganisms. 2021;9:1099. https://doi.org/10.3390/microorganisms9051099 
  17. Li P, Ji S, Wang Q, Qin M, Hou C, Shen Y. Adding sweet potato vines improve the quality of rice straw silage. Anim Sci J. 2017;88:625-32. https://doi.org/10.1111/asj.12690 
  18. Chen S, Li J, Dong Z, Wang J, Zhao J, Wang S, et al. Substitution of various agricultural byproducts improves fermentation profile and in vitro digestibility of rice straw silage. J Agric Sci. 2022;160:278-87. https://doi.org/10.1017/S0021859622000351 
  19. Wang X, Cao X, Liu H, Guo L, Lin Y, Liu X, et al. Effects of lactic acid bacteria on microbial metabolic functions of paper mulberry silage: a BIOLOG ECO microplates approach. Front Microbiol. 2021;12:689174. https://doi.org/10.3389/fmicb.2021.689174 
  20. AOAC [Association of Official Analytical Chemists] International. Official methods of analysisof AOAC International. 21st ed. Rockville, MD: AOAC International; 2019. 
  21. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 
  22. Price ML, Butler LG. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem. 1977;25:1268-73. https://doi.org/10.1021/jf60214a034 
  23. Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130 
  24. Erwin ES, Marco GJ, Emery EM. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci. 1961;44:1768-71. https://doi.org/10.3168/jds.S0022-0302(61)89956-6 
  25. Woolford MK. The silage fermentation. New York: Marcel Dekker; 1984. 
  26. Kilic A. Silo feed (instruction, education, and application proposals). Izmir: Bilgehan Press; 1986. 
  27. Tilley JMA, Terry RA. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963;18:104-11. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x 
  28. McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J. 1948;43:99-109. https://doi.org/10.1042/bj0430099 
  29. Lee K, Marbun TD, Kim S, Song J, Kwon CH, Yoon D, et al. Effect of lactic acid bacteria treatment on nutritive value and in vitro ruminal fermentation of Italian ryegrass (Lolium multiflorum L.) silage. J Korean Soc Grassl Forage Sci. 2020;40:182-9. https://doi.org/10.5333/KGFS.2020.40.3.182 
  30. Evvard JM. A new feeding method and standards for fattening young swine. Ames, Iowa: Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts; 1929. Report bulletin No. 118. 
  31. Abdulrazak SA, Nyangaga J, Fujihara T. Relative palatability to sheep of some browse species, their in sacco degradability and in vitro gas production characteristics. Asian-Australas J Anim Sci. 2001;14:1580-4. https://doi.org/10.5713/ajas.2001.1580 
  32. Manju Wadhwa MW, Bakshi MPS, Makkar HPS. Waste to worth: fruit wastes and byproducts as animal feed. CAB Rev. 2015;2015:31. https://doi.org/10.1079/PAVSNNR201510031 
  33. Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, et al. Effects of sugar sources and doses on fermentation dynamics, carbohydrates changes, in vitro digestibility and gas production of rice straw silage. Ital J Anim Sci. 2019;18:1345-55. https://doi.org/10.1080/1828051X.2019.1659106 
  34. Kim JG, Ham JS, Li YW, Park HS, Huh CS, Park BC. Development of a new lactic acid bacterial inoculant for fresh rice straw silage. Asian-Australas J Anim Sci. 2017;30:950-6. https://doi.org/10.5713/ajas.17.0287 
  35. Xue Z, Mu L, Cai M, Zhang Y, Wanapat M, Huang B. Effect of using banana by-products and other agricultural residues for beef cattle in southern China. Trop Anim Health Prod. 2020;52:489-96. https://doi.org/10.1007/s11250-019-02031-9 
  36. Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins. 2015;7:3057-111. https://doi.org/10.3390/toxins7083057 
  37. Cao Y, Zang Y, Lv R, Takahashi T, Yoshida N, Yang H. Effects of adding urea on fermentation quality of pruned persimmon branch silage and its digestibility, preference, nitrogen balance and rumen fermentation in beef cattle. Anim Sci J. 2014;85:219-26. https://doi.org/10.1111/asj.12135 
  38. Davies DR, Merry RJ, Williams AP, Bakewell EL, Leemans DK, Tweed JKS. Proteolysis during ensilage of forages varying in soluble sugar content. J Dairy Sci. 1998;81:444-53. https://doi.org/10.3168/jds.S0022-0302(98)75596-1 
  39. Charmley E. Towards improved silage quality - a review. Can J Anim Sci. 2001;81:157-68. https://doi.org/10.4141/A00-066 
  40. Seglar B. Fermentation analysis and silage quality testing [Internet]. University Digital Conservancy. 2003 [cited 2023 Jun 24]. https://hdl.handle.net/11299/108997 
  41. Meneses M, Megias MD, Madrid J, Martinez-Teruel A, Hernandez F, Oliva J. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rumin Res. 2007;70:292-6. https://doi.org/10.1016/j.smallrumres.2006.05.008 
  42. Han Y, Ban Q, Hou Y, Meng K, Suo J, Rao J. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Front Plant Sci. 2016;7:624. https://doi.org/10.3389/fpls.2016.00624 
  43. Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, et al. Ensiling as pretreatment of rice straw: the effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol. 2018;266:158-65. https://doi.org/10.1016/j.biortech.2018.06.058 
  44. Li J, Yuan X, Desta ST, Dong Z, Mugabe W, Shao T. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour Technol. 2018;257:76-83. https://doi.org/10.1016/j.biortech.2018.02.070 
  45. Morrison IM. Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. J Agric Sci. 1979;93:581-6. https://doi.org/10.1017/S0021859600038983 
  46. Li J, Shen Y, Cai Y. Improvement of fermentation quality of rice straw silage by application of a bacterial inoculant and glucose. Asian-Australas J Anim Sci. 2010;23:901-6. https://doi.org/10.5713/ajas.2010.90403 
  47. McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. 2nd ed. Marlow: Chalcombe Publications; 1991. 
  48. Kung L, Shaver R. Interpretation and use of silage fermentation analysis reports. Focus Forage. 2001;3:1-5. 
  49. Muck RE. Factors influencing silage quality and their implications for management. J Dairy Sci. 1988;71:2992-3002. https://doi.org/10.3168/jds.S0022-0302(88)79897-5 
  50. Kim JH, Chung IK, Kim HY, Kim KM. Comparison of the quality of dried persimmon (Diospyros kaki THUNB.) treated with medicinal plant extracts and food additives. Food Sci Nutr. 2018;6:1991-8. https://doi.org/10.1002/fsn3.673 
  51. Castello ML, Heredia A, Dominguez E, Ortola MD, Tarrazo J. Influence of thermal treatment and storage on astringency and quality of a spreadable product from persimmon fruit. Food Chem. 2011;128:323-9. https://doi.org/10.1016/j.foodchem.2011.03.023 
  52. Jannok P, Kamitani Y, Kawano S. Development of a common calibration model for determining the Brix value of intact apple, pear and persimmon fruits by near infrared spectroscopy. J Near Infrared Spectrosc. 2014;22:367-73. https://doi.org/10.1255/jnirs.1130 
  53. Kim SK, Lee GD, Chung SK. Monitoring on fermentation of persimmon vinegar from persimmon peel. Korean J Food Sci Technol. 2003;35:642-7. 
  54. Linden JC, Henk LL, Murphy VG, Smith DH, Gabrielsen BC, Tengerdy RP, et al. Preservation of potential fermentables in sweet sorghum by ensiling. Biotechnol Bioeng. 1987;30:860-7. https://doi.org/10.1002/bit.260300708 
  55. Meneses M, Martinez-Marin AL, Madrid J, Martinez-Teruel A, Hernandez F, Megias MD. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ Sci Pollut Res. 2020;27:2919-25. https://doi.org/10.1007/s11356-019-07142-2 
  56. Gasa J, Castrillo C, Baucells MD, Guada JA. By-products from the canning industry as feedstuff for ruminants: digestibility and its prediction from chemical composition and laboratory bioassays. Anim Feed Sci Technol. 1989;25:67-77. https://doi.org/10.1016/0377-8401(89)90108-9 
  57. Getachew G, Robinson PH, DePeters EJ, Taylor SJ. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci Technol. 2004;111:57-71. https://doi.org/10.1016/S0377-8401(03)00217-7 
  58. Dijkstra J. Production and absorption of volatile fatty acids in the rumen. Livest Prod Sci. 1994;39:61-9. https://doi.org/10.1016/0301-6226(94)90154-6 
  59. Foiklang S, Wanapat M, Norrapoke T. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Anim Sci J. 2016;87:370-7. https://doi.org/10.1111/asj.12428 
  60. Meier JS, Kreuzer M, Marquardt S. Design and methodology of choice feeding experiments with ruminant livestock. Appl Anim Behav Sci. 2012;140:105-20. https://doi.org/10.1016/j.applanim.2012.04.008 
  61. Jalal H, Giammarco M, Lanzoni L, Akram MZ, Mammi LME, Vignola G, et al. Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: a review. Agriculture. 2023;13:286. https://doi.org/10.3390/agriculture13020286 
  62. Provenza FD. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J Range Manag. 1995;48:2-17. https://doi.org/10.2307/4002498 
  63. Baumont R. Palatability and feeding behaviour in ruminants. A review. Ann Zootech. 1996;45:385-400. https://doi.org/10.1051/animres:19960501