DOI QR코드

DOI QR Code

Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows

  • Md Azizul Haque (Department of Biotechnology, Yeungnam University) ;
  • Asif Iqbal (Department of Biotechnology, Yeungnam University) ;
  • Mohammad Zahangir Alam (Department of Biotechnology, Yeungnam University) ;
  • Yun-Mi Lee (Department of Biotechnology, Yeungnam University) ;
  • Jae-Jung Ha (Gyeongbuk Livestock Research Institute) ;
  • Jong-Joo Kim (Department of Biotechnology, Yeungnam University)
  • Received : 2023.04.25
  • Accepted : 2023.07.18
  • Published : 2024.07.31

Abstract

This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Livestock Industrialization Technology Development Program (or Project), funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321082-3).

References

  1. Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56:2. https://doi.org/10.1186/2055-0391-56-2
  2. Jo C, Cho SH, Chang J, Nam KC. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Anim Front. 2012;2:32-8. https://doi.org/10.2527/af.2012-0060
  3. Dekkers JCM. Estimation of economic values for dairy cattle breeding goals: bias due to suboptimal management policies. Livest Prod Sci. 1991;29:131-49. https://doi.org/10.1016/0301-6226(91)90062-U
  4. Boichard D. Estimation of the economic value of conception rate in dairy cattle. Livest Prod Sci. 1990;24:187-204. https://doi.org/10.1016/0301-6226(90)90001-M
  5. Cammack KM, Thomas MG, Enns RM. Reproductive traits and their heritabilities in beef cattle. Prof Anim Sci. 2009;25:517-28. https://doi.org/10.15232/S1080-7446(15)30753-1
  6. Nwogwugwu CP, Kim Y, Ugbo EH, Lee JH, Lee SH. Estimates of genetic parameters and genetic trends for growth traits of Doyogena sheep in Southern Ethiopia. J Anim Breed Genom. 2020;4:19-31.
  7. Zhou J, Liu L, Chen CJ, Zhang M, Lu X, Zhang Z, et al. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics. 2019;20:827. https://doi.org/10.1186/s12864-019-6224-x
  8. Beneberu N, Alemayehu K, Mebratie W, Getahun K, Wodajo F, Tesema Z. Genetic and phenotypic correlations for reproductive and milk production traits of pure Jersey dairy cows at Adea-Berga, central highland of Ethiopia. Livest Res Rural Dev. 2021;33:1-7.
  9. van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20:567-81. https://doi.org/10.1038/s41576-019-0137-z
  10. Bourdon RM. Understanding animal breeding. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2000.
  11. Hill WG. Genetic correlation. In: Maloy S, Hughes K, editors. Brenner's encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 237-9.
  12. Goshu G, Singh H, Petersson KJ, Lundeheim H. Heritability and correlation among first lactation traits in Holstein Friesian cows at Holeta Bull Dam Station, Ethiopia. Int J Livest Prod. 2014;5:47-53. https://doi.org/10.5897/IJLP2013.0165
  13. Abegaz S, Negussie E, Duguma G, Rege JEO. Genetic parameter estimates for growth traits in Horro sheep. J Anim Breed Genet. 2002;119:35-45. https://doi.org/10.1046/j.1439-0388.2002.00309.x
  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-75. https://doi.org/10.1086/519795
  15. Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021;108:1880-90. https://doi.org/10.1016/j.ajhg.2021.08.005
  16. Lee SH, van der Werf JHJ. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics. 2016;32:1420-2. https://doi.org/10.1093/bioinformatics/btw012
  17. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
  18. Henderson CR. Selection index and expected genetic advance. In: Hanson WD, Robinson HF, editors. Statisitical genetics and plant breeding. Washington, DC: National Academy of Science, National Research Council. 1963. p. 141-63.
  19. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
  20. Lopez BI, Lee SH, Park JE, Shin DH, Oh JD, de las Heras-Saldana S, et al. Weighted genomic best linear unbiased prediction for carcass traits in Hanwoo cattle. Genes. 2019;10:1019. https://doi.org/10.3390/genes10121019
  21. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res. 2012;94:73-83. https://doi.org/10.1017/S0016672312000274
  22. Stranden I, Garrick DJ. Technical note: derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci. 2009;92:2971-5. https://doi.org/10.3168/jds.2008-1929
  23. Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLOS ONE. 2010;5:e12648. https://doi.org/10.1371/journal.pone.0012648
  24. Misztal I, Tsuruta S, Lourenco D, Masuda Y, Aguilar I, Legarra A, et al. Manual for BLUPF90 family of programs. Athens, GA: University of Georgia; 2022.
  25. Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90 - POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production; 2014; Vancouver, BC.
  26. Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol. 2012;44:4. https://doi.org/10.1186/1297-9686-44-4
  27. Rostamzadeh Mahdabi E, Tian R, Li Y, Wang X, Zhao M, Li H, et al. Genomic heritability and correlation between carcass traits in Japanese Black cattle evaluated under different ceilings of relatedness among individuals. Front Genet. 2023;14:1053291. https://doi.org/10.3389/fgene.2023.1053291
  28. Brzakova M, Citek J, Svitakova A, Vesela Z, Vostry L. Genetic parameters for age at first calving and first calving interval of beef cattle. Animals. 2020;10:2122. https://doi.org/10.3390/ani10112122
  29. Brzakova M, Zavadilova L, Pribyl J, Pesek P, Kasna E, Kranjcevicova A. Estimation of genetic parameters for female fertility traits in the Czech Holstein population. Czech J Anim Sci. 2019;64:199-206. https://doi.org/10.17221/51/2018-CJAS
  30. Ghavi Hossein-Zadeh N. Genetic parameters and trends for calving interval in the first three lactations of Iranian Holsteins. Trop Anim Health Prod. 2011;43:1111-5. https://doi.org/10.1007/s11250-011-9809-1
  31. Setiaji A, Oikawa T. Genetic parameters of reproductive traits from artificial insemination records of Japanese Black cows. Livest Sci. 2019;229:85-9. https://doi.org/10.1016/j.livsci.2019.09.018
  32. Yague G, Goyache F, Becerra J, Moreno C, Sanchez L, Altarriba J. Bayesian estimates of genetic parameters for pre-conception traits, gestation length and calving interval in beef cattle. Anim Reprod Sci. 2009;114:72-80. https://doi.org/10.1016/j.anireprosci.2008.09.015
  33. Kasna E, Zavadilova L, Krupa E, Krupova Z, Kranjcevicova A. Evaluation of gestation length in Czech Holstein cattle. Czech J Anim Sci. 2020;65:473-81. https://doi.org/10.17221/150/2020-CJAS
  34. Lopez BI, Son JH, Seo K, Lim D. Estimation of genetic parameters for reproductive traits in Hanwoo (Korean cattle). Animals. 2019;9:715. https://doi.org/10.3390/ani9100715
  35. Alam M, Lee SH, Lee DH, Cho C, Park MN. Genetic analysis of major carcass traits of Korean Hanwoo males raised for thirty months. Animals. 2021;11:1792. https://doi.org/10.3390/ani11061792
  36. Naserkheil M, Bahrami A, Lee D, Mehrban H. Integrating single-step GWAS and bipartite networks reconstruction provides novel insights into yearling weight and carcass traits in Hanwoo beef cattle. Animals. 2020;10:1836. https://doi.org/10.3390/ani10101836
  37. Oyama K, Katsuta T, Anada K, Mukai F. Heritability and repeatability estimates for reproductive traits of Japanese black cows. Asian-Australas J Anim Sci. 2002;15:1680-5. https://doi.org/10.5713/ajas.2002.1680
  38. Vinothraj S, Subramaniyan A, Venkataramanan R, Joseph C, Sivaselvam SN. Genetic evaluation of reproduction performance of Jersey × Red Sindhi crossbred cows. Vet World. 2016;9:1012-7. https://doi.org/10.14202/vetworld.2016.1012-1017
  39. Schmidt PI, Campos GS, Roso VM, Souza FRP, Boligon AA. Genetic analysis of female reproductive efficiency, scrotal circumference and growth traits in Nelore cattle. Theriogenology. 2019;128:47-53. https://doi.org/10.1016/j.theriogenology.2019.01.032
  40. Grossi DdA, Berton MP, Buzanskas ME, Chud TCS, Grupioni NV, de Paz CC, et al. Genetic analysis on accumulated productivity and calving intervals in Nelore cattle. Trop Anim Health Prod. 2016;48:207-10. https://doi.org/10.1007/s11250-015-0915-3
  41. Elzo MA, Mateescu RG, Rae DO, Carr CC, Scheffler TL, Scheffler JM, et al. Genomic-polygenic EBV for reproduction, ultrasound-carcass, and tenderness traits in the Florida multibreed Brahman-Angus population. In: Proceedings of the World Congress on Genetics Applied to Livestock Production; 2018; Rome, Italy.
  42. Alejandro MA, Martinez SR, Ceron-Munoz M. Parametros geneticos para crecimiento y reproduccion en ganado Simmental mediante parentesco por pedigri y genomico. Revista MVZ Cordoba. 2020;25:e1520. https://doi.org/10.21897/rmvz.1520
  43. Naserkheil M, Lee D, Chung K, Park MN, Mehrban H. Estimation of genetic correlations of primal cut yields with carcass traits in Hanwoo beef cattle. Animals. 2021;11:3102. https://doi.org/10.3390/ani11113102
  44. Srivastava S, Lopez BI, Kumar H, Jang M, Chai HH, Park W, et al. Prediction of Hanwoo cattle phenotypes from genotypes using machine learning methods. Animals. 2021;11:2066. https://doi.org/10.3390/ani11072066
  45. Lopez BIM, An N, Srikanth K, Lee S, Oh JD, Shin DH, et al. Genomic prediction based on SNP functional annotation using imputed whole-genome sequence data in Korean Hanwoo cattle. Front Genet. 2021;11:603822. https://doi.org/10.3389/fgene.2020.603822
  46. Houle D. Comparing evolvability and variability of quantitative traits. Genetics. 1992;130:195-204. https://doi.org/10.1093/genetics/130.1.195
  47. Mehrban H, Naserkheil M, Lee DH, Cho C, Choi T, Park M, et al. Genomic prediction using alternative strategies of weighted single-step genomic BLUP for yearling weight and carcass traits in Hanwoo beef cattle. Genes. 2021;12:266. https://doi.org/10.3390/genes12020266
  48. Guarini AR, Lourenco DAL, Brito LF, Sargolzaei M, Baes CF, Miglior F, et al. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. J Dairy Sci. 2018;101:8076-86. https://doi.org/10.3168/jds.2017-14193
  49. Alves AAC, Espigolan R, Bresolin T, Costa RM, Fernandes Junior GA, Ventura RV, et al. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods. Anim Genet. 2021;52:32-46. https://doi.org/10.1111/age.13021
  50. Laodim T, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D. Genomic-polygenic and polygenic predictions for milk yield, fat yield, and age at first calving in Thai multibreed dairy population using genic and functional sets of genotypes. Livest Sci. 2019;219:17-24. https://doi.org/10.1016/j.livsci.2018.11.008
  51. Mota RR, Silva FFE, Guimaraes SEF, Hayes B, Fortes MRS, Kelly MJ, et al. Benchmarking Bayesian genome enabled-prediction models for age at first calving in Nellore cows. Livest Sci. 2018;211:75-9. https://doi.org/10.1016/j.livsci.2018.03.009
  52. Costa RB, Irano N, Diaz IDPS, Takada L, Hermisdorff IDC, Carvalheiro R, et al. Prediction of genomic breeding values for reproductive traits in Nellore heifers. Theriogenology. 2019;125:12-7. https://doi.org/10.1016/j.theriogenology.2018.10.014
  53. Boddhireddy P, Prayaga K, Barros P, Lobo R, DeNise S. Genomic predictions of economically important traits in Nelore cattle of Brazil. In: Proceedings of the 10th World Congress of Genetics Applied to Livestock Production; 2014; Vancouver, BC.
  54. Chen L, Vinsky M, Li C. Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Anim Genet. 2015;46:55-9. https://doi.org/10.1111/age.12238
  55. Fernandes Junior GA, Rosa GJM, Valente BD, Carvalheiro R, Baldi F, Garcia DA, et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. Genet Sel Evol. 2016;48:7. https://doi.org/10.1186/s12711-016-0188-y
  56. Gordo DGM, Espigolan R, Tonussi RL, Junior GAF, Bresolin T, Magalhaes AFB, et al. Genetic parameter estimates for carcass traits and visual scores including or not genomic information. J Anim Sci. 2016;94:1821-6. https://doi.org/10.2527/jas.2015-0134
  57. Mehrban H, Lee DH, Naserkheil M, Moradi MH, Ibanez-Escriche N. Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models. PLOS ONE. 2019;14:e0223352. https://doi.org/10.1371/journal.pone.0223352
  58. Kim EH, Kang HC, Sun DW, Myung CH, Kim JY, Lee DH, et al. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle). J Anim Breed Genet. 2022;139:281-91. https://doi.org/10.1111/jbg.12661
  59. Dahliani ER, Rahmatan H, Djufri. The correlation between students' interest and learning outcomes in biology. J Phys Conf Ser. 2020;1460:012072. https://doi.org/10.1088/1742-6596/1460/1/012072
  60. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow: Pearson Prentice Hall; 1996.
  61. Shin S, Lee J, Do C. Genetic relationship of age at first calving with conformation traits and calving interval in Hanwoo cows. J Anim Sci Technol. 2021;63:740-50. https://doi.org/10.5187/jast.2021.e73
  62. Bourdon RM, Brinks JS. Genetic, environmental and phenotypic relationships among gestation length, birth weight, growth traits and age at first calving in beef cattle. J Anim Sci. 1982;55:543-53. https://doi.org/10.2527/jas1982.553543x
  63. MacGregor RG, Casey NH. Evaluation of calving interval and calving date as measures of reproductive performance in a beef herd. Livest Prod Sci. 1999;57:181-91. https://doi.org/10.1016/S0301-6226(98)00158-4
  64. Gutierrez JP, Alvarez I, Fernandez I, Royo LJ, Díez J, Goyache F. Genetic relationships between calving date, calving interval, age at first calving and type traits in beef cattle. Livest Prod Sci. 2002;78:215-22. https://doi.org/10.1016/S0301-6226(02)00100-8
  65. Lobo RNB. Genetic parameters for reproductive traits of zebu cows in the semi-arid region of Brazil. Livest Prod Sci. 1998;55:245-8. https://doi.org/10.1016/S0301-6226(98)00142-0
  66. Berry DP, Evans RD. Genetics of reproductive performance in seasonal calving beef cows and its association with performance traits. J Anim Sci. 2014;92:1412-22. https://doi.org/10.2527/jas.2013-6723
  67. Cavani L, Garcia DA, Carreno LOD, Ono RK, Pires MP, Farah MM, et al. Estimates of genetic parameters for reproductive traits in Brahman cattle breed. J Anim Sci. 2015;93:3287-91. https://doi.org/10.2527/jas.2015-8970
  68. Mercadante MEZ, Lobo RB, Nunes de Oliveira H. Estimativas de (Co)variancias entre caracteristicas de reproducao e de crescimento em femeas de um rebanho Nelore. Rev Bras Zootec. 2000;29:997-1004. https://doi.org/10.1590/S1516-35982000000400008
  69. Ulhoa Magnabosco C, Brito Lopes F, de Magalhaes Rosa GJ, Sainz RD. Bayesian estimates of genetic parameters for reproductive traits in Nellore cows raised on pasture in tropical regions. Rev Colomb Cienc Pecu. 2016;29:119-29. https://doi.org/10.17533/udea.rccp.v29n2a05
  70. Oyama K, Katsuta T, Anada K, Mukai F. Genetic parameters for reproductive performance of breeding cows and carcass traits of fattening animals in Japanese Black (Wagyu) cattle. Anim Sci. 2004;78:195-201. https://doi.org/10.1017/S1357729800053984
  71. Bekele A, Wuletaw Z, Haile A, Gizaw S, Mekuriaw G. Genetic parameters for reproduction traits and correlation with pre weaning growth traits of Fogera cattle at Metekel ranch, north west Ethiopia. Livest Res Rural Dev. 2017;29:152.
  72. Setiaji A, Oikawa T. Genetics of heifer reproductive traits in Japanese Black cattle. Asian-Australas J Anim Sci. 2020;33:197-202. https://doi.org/10.5713/ajas.19.0118
  73. Park MN, Alam M, Kim S, Park B, Lee SH, Lee SS. Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle. Asian-Australas J Anim Sci. 2020;33:1544-57. https://doi.org/10.5713/ajas.18.0936
  74. Choi TJ, Alam M, Cho CI, Lee JG, Park B, Kim S, et al. Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle. J Anim Sci. 2015;93:1511-21. https://doi.org/10.2527/jas.2014-7953
  75. Baik DH, Hoque MA, Choe HS. Estimation of genetic and environmental parameters of carcass traits in Hanwoo (Korean native cattle) populations. Asian-Australas J Anim Sci. 2002;15:1523-6. https://doi.org/10.5713/ajas.2002.1523
  76. Roh SH, Kim CY, Won YS, Park CJ, Lee SS, Lee JG. Studies on genetic parameter estimation and sire selection to ultrasound measurement traits of Hanwoo. J Anim Sci Technol. 2010;52:1-8. https://doi.org/10.5187/JAST.2010.52.1.001
  77. Bhuiyan MSA, Kim HJ, Lee DH, Lee SH, Cho SH, Yang BS, et al. Genetic parameters of carcass and meat quality traits in different muscles (longissimus dorsi and semimembranosus) of Hanwoo (Korean cattle). J Anim Sci. 2017;95:3359-69. https://doi.org/10.2527/jas.2017.1493
  78. Kemp DJ, Herring WO, Kaiser CJ. Genetic and environmental parameters for steer ultrasound and carcass traits. J Anim Sci. 2002;80:1489-96. https://doi.org/10.2527/2002.8061489x
  79. Reverter A, Johnston DJ, Graser HU, Wolcott ML, Upton WH. Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle. J Anim Sci. 2000;78:1786-95. https://doi.org/10.2527/2000.7871786x
  80. MacNeil MD, Northcutt SL. National cattle evaluation system for combined analysis of carcass characteristics and indicator traits recorded by using ultrasound in Angus cattle. J Anim Sci. 2008;86:2518-24. https://doi.org/10.2527/jas.2008-0901
  81. Wilson DE, Willham RL, Northcutt SL, Rouse GH. Genetic parameters for carcass traits estimated from Angus field records. J Anim Sci. 1993;71:2365-70. https://doi.org/10.2527/1993.7192365x
  82. Moser DW, Bertrand JK, Misztal I, Kriese LA, Benyshek LL. Genetic parameter estimates for carcass and yearling ultrasound measurements in Brangus cattle. J Anim Sci. 1998;76:2542-8. https://doi.org/10.2527/1998.76102542x
  83. Stelzleni AM, Perkins TL, Brown AH Jr, Pohlman FW, Johnson ZB, Sandelin BA. Genetic parameter estimates of yearling live animal ultrasonic measurements in Brangus cattle. J Anim Sci. 2002;80:3150-3. https://doi.org/10.2527/2002.80123150x
  84. Elzo MA, Mateescu RG, Johnson DD, Scheffler TL, Scheffler JM, Carr C, et al. Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livest Sci. 2017;202:58-66. https://doi.org/10.1016/j.livsci.2017.05.027
  85. Miar Y, Plastow GS, Bruce HL, Moore SS, Durunna ON, Nkrumah JD, et al. Estimation of genetic and phenotypic parameters for ultrasound and carcass merit traits in crossbred beef cattle. Can J Anim Sci. 2014;94:273-80. https://doi.org/10.4141/cjas2013-115
  86. Yokoo MJ, Lobo RB, Magnabosco CU, Rosa GJM, Forni S, Sainz RD, et al. Genetic correlation of traits measured by ultrasound at yearling and 18 months of age in Nellore beef cattle. Livest Sci. 2015;180:34-40. https://doi.org/10.1016/j.livsci.2015.07.003
  87. Su H, Golden B, Hyde L, Sanders S, Garrick D. Genetic parameters for carcass and ultrasound traits in Hereford and admixed Simmental beef cattle: accuracy of evaluating carcass traits. J Anim Sci. 2017;95:4718-27. https://doi.org/10.2527/jas2017.1865
  88. Gordo DGM, Baldi F, Lobo RB, Koury Filho W, Sainz RD, Albuquerque LG. Genetic association between body composition measured by ultrasound and visual scores in Brazilian Nelore cattle. J Anim Sci. 2012;90:4223-9. https://doi.org/10.2527/jas.2011-3935
  89. Riley DG, Chase CC Jr, Hammond AC, West RL, Johnson DD, Olson TA, et al. Estimated genetic parameters for carcass traits of Brahman cattle. J Anim Sci. 2002;80:955-62. https://doi.org/10.2527/2002.804955x
  90. Smith T, Domingue JD, Paschal JC, Franke DE, Bidner TD, Whipple G. Genetic parameters for growth and carcass traits of Brahman steers. J Anim Sci. 2007;85:1377-84. https://doi.org/10.2527/jas.2006-653
  91. Devitt CJB, Wilton JW. Genetic correlation estimates between ultrasound measurements on yearling bulls and carcass measurements on finished steers. J Anim Sci. 2001;79:2790-7. https://doi.org/10.2527/2001.79112790x
  92. Davoli R, Catillo G, Serra A, Zappaterra M, Zambonelli P, Zilio DM, et al. Genetic parameters of backfat fatty acids and carcass traits in Large White pigs. Animal. 2019;13:924-32. https://doi.org/10.1017/S1751731118002082
  93. Naserkheil M, Lee DH, Kong HS, Seong J, Mehrban H. Estimation of genetic parameters and correlation between yearling ultrasound measurements and carcass traits in Hanwoo cattle. Animals. 2021;11:1425. https://doi.org/10.3390/ani11051425
  94. Hwang JM, Cheong JK, Kim SS, Jung BH, Koh MJ, Kim HC, et al. Genetic analysis of ultrasound and carcass measurement traits in a regional hanwoo steer population. Asian-Australas J Anim Sci. 2014;27:457-63. https://doi.org/10.5713/ajas.2013.13543
  95. MacNeil MD, Cundiff LV, Dinkel CA, Koch RM. Genetics correlations among sex-limited traits in beef cattle. J Anim Sci. 1984;58:1171-80. https://doi.org/10.2527/jas1984.5851171x
  96. Caetano SL, Savegnago RP, Boligon AA, Ramos SB, Chud TCS, Lobo RB, et al. Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle. Livest Sci. 2013;155:1-7. https://doi.org/10.1016/j.livsci.2013.04.004
  97. Guidolin DGF, Grupioni NV, Chud TCS, Urbinati I, Lobo RB, Bezerra LAF, et al. Genetic association for growth, reproductive and carcass traits in guzera beef catle. In: Proceedings of 9th World Congress on Genetics Applied to Livestock Production; 2010; Leipzig, Germany.