DOI QR코드

DOI QR Code

Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario

  • AMM Nurul Alam (Division of Applied Life Science (BK 21 Four), Gyeongsang National University) ;
  • Eun-Yeong Lee (Division of Applied Life Science (BK 21 Four), Gyeongsang National University) ;
  • Md Jakir Hossain (Division of Applied Life Science (BK 21 Four), Gyeongsang National University) ;
  • Abdul Samad (Division of Applied Life Science (BK 21 Four), Gyeongsang National University) ;
  • So-Hee Kim (Division of Applied Life Science (BK 21 Four), Gyeongsang National University) ;
  • Young-Hwa Hwang (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Seon-Tea Joo (Division of Applied Life Science (BK 21 Four), Gyeongsang National University)
  • 투고 : 2024.01.24
  • 심사 : 2024.04.20
  • 발행 : 2024.07.31

초록

Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.

키워드

과제정보

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1I1A206937911), and the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Agri-Bioindustry Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (Project No. 321028-5), Korea.

참고문헌

  1. NASA [National Aeronautics and Space Administration]. Global climate change [Internet]. Vital Signs of the Planet. 2021 [cited 2023 Dec 9]. https://climate.nasa.gov/evidence/
  2. Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, et al. Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. New York, NY: Cambridge University Press; 2013.
  3. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. Heat effects on mortality in 15 European cities. Epidemiology. 2008;1:711-9. https://doi.org/10.1097/EDE.0b013e318176bfcd
  4. Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64:1613-28. https://doi.org/10.1007/s00484-020-01929-6
  5. Ma X, Jiang Z, Zheng C, Hu Y, Wang L. Nutritional regulation for meat quality and nutrient metabolism of pigs exposed to high temperature environment. Nutr Food Sci. 2015;5:1-5. https://doi.org/10.4172/2155-9600.1000420
  6. Cobanovic N, Stajkovic S, Blagojevic B, Betic N, Dimitrijevic M, Vasilev D, et al. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int J Biometeorol. 2020;64:1899-909. https://doi.org/10.1007/s00484-020-01977-y
  7. Rhoads RP, Baumgard LH, Suagee JK, Sanders SR. Nutritional interventions to alleviate the negative consequences of heat stress. Adv Nutr. 2013;4:267-76. https://doi.org/10.3945/an.112.003376
  8. IPCC [Intergovernmental Panel on Climate Change]. Special report: global warming of 1.5℃ [Internet]. 2018 [cited 2024 Jan 17]. https://www.ipcc.ch/sr15/
  9. Athira P, Ratnakaran V, Sejian V, Sanjo Jose V, Shalini V, Bagath M, et al. Behavioral responses to livestock adaptation to heat stress challenges. Asian J Anim Sci. 2017;11:1-13. https://doi.org/10.3923/ajas.2017.1.13
  10. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al. New insights in improving sustainability in meat production: opportunities and challenges. Crit Rev Food Sci Nutr. 2023;63:11830-58. https://doi.org/10.1080/10408398.2022.2096562
  11. Dennehy DG. Evaluation of Cobb MV x Cobb 500 broiler digestible lysine requirement and response to various nutrient regimens during the finisher phase [Master's thesis]. Mississippi State, MS: Mississippi State University; 2022.
  12. Tallentire CW, Leinonen I, Kyriazakis I. Breeding for efficiency in the broiler chicken: a review. Agron Sustain Dev. 2016;36:66. https://doi.org/10.1007/s13593-016-0398-2
  13. Goo D, Kim JH, Park GH, Delos Reyes JB, Kil DY. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals. 2019;9:107. https://doi.org/10.3390/ani9030107
  14. Pardo Z, Fernandez-Figares I, Lachica M, Lara L, Nieto R, Seiquer I. Impact of heat stress on meat quality and antioxidant markers in Iberian pigs. Antioxidants. 2021;10:1911. https://doi.org/10.3390/antiox10121911
  15. Kadzere CT, Murphy MR, Silanikove N, Maltz E. Heat stress in lactating dairy cows: a review. Livest Prod Sci. 2002;77:59-91. https://doi.org/10.1016/S0301-6226(01)00330-X
  16. Tajima K, Nonaka I, Higuchi K, Takusari N, Kurihara M, Takenaka A, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe. 2007;13:57-64. https://doi.org/10.1016/j.anaerobe.2006.12.001
  17. England EM, Scheffler TL, Kasten SC, Matarneh SK, Gerrard DE. Exploring the unknowns involved in the transformation of muscle to meat. Meat Sci. 2013;95:837-43. https://doi.org/10.1016/j.meatsci.2013.04.031
  18. Freitas AS, Carvalho LM, Soares AL, Oliveira MES, Madruga MS, Neto ACS, et al. Pale, soft and exudative (PSE) and dark, firm and dry (DFD) meat determination in broiler chicken raised under tropical climate management conditions. Int J Poult Sci. 2017;16:81-7. https://doi.org/10.3923/ijps.2017.81.87
  19. Kim BYH, Warner RD, Rosenvold K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. Anim Prod Sci. 2014;54:375-95. https://doi.org/10.1071/AN13329
  20. Adzitey F, Nurul H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: causes and measures to reduce these incidences. Int Food Res J. 2011;18:11-20.
  21. Wang RR, Pan XJ, Peng ZQ. Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult Sci. 2009;88:1078-84. https://doi.org/10.3382/ps.2008-00094
  22. Asseng S, Spankuch D, Hernandez-Ochoa IM, Laporta J. The upper temperature thresholds of life. Lancet Planet Health. 2021;5:E378-85. https://doi.org/10.1016/S2542-5196(21)00079-6
  23. Hansen PJ. Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B Biol Sci. 2009;364:3341-50. https://doi.org/10.1098/rstb.2009.0131
  24. Houben JH, van Dijk A, Eikelenboom G, Hoving-Bolink AH. Effect of dietary vitamin E supplementation, fat level and packaging on colour stability and lipid oxidation in minced beef. Meat Sci. 2000;55:331-6. https://doi.org/10.1016/S0309-1740(99)00161-8.
  25. Mignon-Grasteau S, Moreri U, Narcy A, Rousseau X, Rodenburg TB, Tixier-Boichard M, et al. Robustness to chronic heat stress in laying hens: a meta-analysis. Poult Sci. 2015;94:586-600. https://doi.org/10.3382/ps/pev028
  26. Morignat E, Perrin JB, Gay E, Vinard JL, Calavas D, Henaux V. Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France. PLOS ONE. 2014;9:e93176. https://doi.org/10.1371/journal.pone.0093176
  27. Schauberger G, Mikovits C, Zollitsch W, Hortenhuber SJ, Baumgartner J, Niebuhr K, et al. Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. Clim Change. 2019;156:567-87. https://doi.org/10.1007/s10584-019-02525-3
  28. Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6:707-28. https://doi.org/10.1017/S1751731111002448
  29. Gonzalez-Rivas PA, DiGiacomo K, Giraldo PA, Leury BJ, Cottrell JJ, Dunshea FR. Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. J Anim Sci. 2017;95:5547-62. https://doi.org/10.2527/jas2017.1843
  30. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. 2013;3:356-69. https://doi.org/10.3390/ani3020356
  31. Deeb N, Shlosberg A, Cahaner A. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 4. Association between responses to heat stress and to coldinduced ascites. Poult Sci. 2002;81:1454-62. https://doi.org/10.1093/ps/81.10.1454
  32. Chiang W, Booren A, Strasburg G. The effect of heat stress on thyroid hormone response and meat quality in turkeys of two genetic lines. Meat Sci. 2008;80:615-22. https://doi.org/10.1016/j.meatsci.2008.02.012
  33. Silva JE. The thermogenic effect of thyroid hormone and its clinical implications. Ann Intern Med. 2003;139:205-13. https://doi.org/10.7326/0003-4819-139-3-200308050-00010
  34. Tao X, Zhang ZY, Dong H, Zhang H, Xin H. Responses of thyroid hormones of market-size broilers to thermoneutral constant and warm cyclic temperatures. Poult Sci. 2006;85:1520-8. https://doi.org/10.1093/ps/85.9.1520
  35. Dai SF, Gao F, Xu XL, Zhang WH, Song SX, Zhou GH. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress. Br Poult Sci. 2012;53:471-81. https://doi.org/10.1080/00071668.2012.719148
  36. Akter Y, O'Shea CJ, Moore D, Hutchison CL. The response of growth performance and meat quality of broiler chickens to an experimental model of cyclical heat stress. In: 28th Annual Australian Poultry Science Symposium; 2017; Sydney, New South Wales. p. 237-40.
  37. Imik H, Atasever MA, Urcar S, Ozlu H, Gumus R, Atasever M. Meat quality of heat stress exposed broilers and effect of protein and vitamin E. Br Poult Sci. 2012;53:689-98. https://doi.org/10.1080/00071668.2012.736609
  38. Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, et al. Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J Agric Food Chem. 2017;65:11251-8. https://doi.org/10.1021/acs.jafc.7b04428
  39. Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M, Furness JB, Dunshea FR. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals. 2018;8:162. https://doi.org/10.3390/ani8100162
  40. Zhang ZY, Jia GQ, Zuo JJ, Zhang Y, Lei J, Ren L, et al. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult Sci. 2012;91:2931-7. https://doi.org/10.3382/ps.2012-02255
  41. Sandercock DA, Hunter RR, Nute GR, Mitchell MA, Hocking PM. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult Sci. 2001;80:418-25. https://doi.org/10.1093/ps/80.4.418
  42. Gregory NG. How climatic changes could affect meat quality. Food Res Int. 2010;43:1866-73. https://doi.org/10.1016/j.foodres.2009.05.018
  43. Suman SP, Joseph P. Myoglobin chemistry and meat color. Annu Rev Food Sci Technol. 2013;4:79-99. https://doi.org/10.1146/annurev-food-030212-182623
  44. Hughes J, Clarke F, Purslow P, Warner R. A high rigor temperature, not sarcomere length, determines light scattering properties and muscle colour in beef M. sternomandibularis meat and muscle fibres. Meat Sci. 2018;145:1-8. https://doi.org/10.1016/j.meatsci.2018.05.011
  45. Dubey S, Brahambhatta MN, Singh RV, Gupta B, Sharma N, Patel R, et al. Epidemiology and techno-economical aspect of haemorrhagic septicaemia in India: a review. Rakasah Tech Rev; 2021:11;6-16.
  46. McPhail NG, Stark JL, Ball AJ, Warner RD. Factors influencing the occurrence of high ultimate pH in three muscles of lamb carcasses in Australia. Anim Prod Sci. 2014;54:1853-9. https://doi.org/10.1071/AN14315
  47. Boykin CA, Eastwood LC, Harris MK, Hale DS, Kerth CR, Griffin DB, et al. National Beef Quality Audit - 2016: survey of carcass characteristics through instrument grading assessments. J Anim Sci. 2017;95:3003-11. https://doi.org/10.2527/jas.2017.1544
  48. Pighin DG, Brown W, Ferguson DM, Fisher AD, Warner RD. Relationship between changes in core body temperature in lambs and post-slaughter muscle glycogen content and dark-cutting. Anim Prod Sci. 2014;54:459-63. https://doi.org/10.1071/AN12379
  49. Strydom P, Luhl J, Kahl C, Hoffman LC. Comparison of shear force tenderness, drip and cooking loss, and ultimate muscle pH of the loin muscle among grass-fed steers of four major beef crosses slaughtered in Namibia. S Afr J Anim Sci. 2016;46:348-59. https://doi.org/10.4314/sajas.v46i4.2
  50. Warner RD, Dunshea FR, Gutzke D, Lau J, Kearney G. Factors influencing the incidence of high rigor temperature in beef carcasses in Australia. Anim Prod Sci. 2014;54:363-74. https://doi.org/10.1071/AN13455
  51. Archana PR, Sejian V, Ruban W, Bagath M, Krishnan G, Aleena J, et al. Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci. 2018;141:66-80. https://doi.org/10.1016/j.meatsci.2018.03.015
  52. Panjono P, Kang SM, Lee IS, Kim YJ, Lee SK. Relationship of slaughter age and carcass traits of Hanwoo cattle. Korean J Food Sci Anim. 2009;29:550-6. https://doi.org/10.5851/kosfa.2009.29.5.550
  53. Panjono, Kang SM, Lee IS, Lee SK. The quality characteristics of M. longissimus from Hanwoo (Korean cattle) steer with different raising altitudes and slaughter seasons. Livest Sci. 2011;136:240-6. https://doi.org/10.1016/j.livsci.2010.09.015
  54. Jacob RH, Pearce KL, Pethick DW. Dehydration does not change the eating quality of lamb meat. In: Troy D, Pearce R, Byrne B, Kerry J, editors. 52nd international congress of meat science and technology. Wageningen: Wageningen Academic; 2006. p. 129-30.
  55. Jacob RH, Pethick DW, Clark P, D'Souza DN, Hopkins DL, White J. Quantifying the hydration status of lambs in relation to carcass characteristics. Aust J Exp Agric. 2006;46:429-37. https://doi.org/10.1071/EA04093
  56. European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022;20:e07666. https://doi.org/10.2903/j.efsa.2022.7666
  57. Mkangara M. Prevention and control of human Salmonella enterica infections: an implication in food safety. Int J Food Sci. 2023;2023:8899596. https://doi.org/10.1155/2023/8899596
  58. Rostagno MH. Can stress in farm animals increase food safety risk? Foodborne Pathog Dis. 2009;6:767-76. https://doi.org/10.1089/fpd.2009.0315
  59. Galan-Relano A, Valero Diaz A, Huerta Lorenzo B, Gomez-Gascon L, Mena Rodriguez MA, Carrasco Jimenez E, et al. Salmonella and salmonellosis: an update on public health implications and control strategies. Animals. 2023;13:3666. https://doi.org/10.3390/ani13233666
  60. Gabler NK, Pearce SC. The impact of heat stress on intestinal function and productivity in grow-finish pigs. Anim Prod Sci. 2015;55:1403-10. https://doi.org/10.1071/AN15280
  61. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol. 1995;16:177-83. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  62. Firrman J, Liu L, Mahalak K, Tanes C, Bittinger K, Tu V, et al. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiol Ecol. 2022;98:fiac038. https://doi.org/10.1093/femsec/fiac038
  63. Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol. 2017;70:9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015
  64. Buder C, Meemken D, Furstenberg R, Langforth S, Kirse A, Langkabel N. Drinking pipes and nipple drinkers in pig abattoir lairage pens-a source of zoonotic pathogens as a hazard to meat safety. Microorganisms. 2023;11:2554. https://doi.org/10.3390/microorganisms11102554
  65. Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit Rev Microbiol. 2016;42:548-72. https://doi.org/10.3109/1040841X.2014.972335
  66. Self JL, Luna-Gierke RE, Fothergill A, Holt KG, Vieira AR. Outbreaks attributed to pork in the United States, 1998-2015. Epidemiol Infect. 2017;145:2980-90. https://doi.org/10.1017/S0950268817002114
  67. Chai SJ, Cole D, Nisler A, Mahon BE. Poultry: the most common food in outbreaks with known pathogens, United States, 1998-2012. Epidemiol Infect. 2017;145:316-25. https://doi.org/10.1017/S0950268816002375
  68. Skarp CPA, Hanninen ML, Rautelin HIK. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect. 2016;22:103-9. https://doi.org/10.1016/j.cmi.2015.11.019
  69. Wells JE, Berry ED, Kim M, Shackelford SD, Hales KE. Evaluation of commercial β-agonists, dietary protein, and shade on fecal shedding of Escherichia coli O157:H7 from feedlot cattle. Foodborne Pathog Dis. 2017;14:649-55. https://doi.org/10.1089/fpd.2017.2313
  70. Marchewka J, Sztandarski P, Solka M, Louton H, Rath K, Vogt L, et al. Linking key husbandry factors to the intrinsic quality of broiler meat. Poult Sci. 2023;102:102384. https://doi.org/10.1016/j.psj.2022.102384
  71. Matarneh SK, Scheffler TL, Gerrard DE. The conversion of muscle to meat. In: Toldra F, editor. Lawrie's meat science. 9th ed. Cambridge, MA: Woodhead Publishing; 2023. p. 159-94.
  72. Terlouw EMC, Picard B, Deiss V, Berri C, Hocquette JF, Lebret B, et al. Understanding the determination of meat quality using biochemical characteristics of the muscle: stress at slaughter and other missing keys. Foods. 2021;10:84. https://doi.org/10.3390/foods10010084
  73. Rocha LM, Velarde A, Dalmau A, Saucier L, Faucitano L. Can the monitoring of animal welfare parameters predict pork meat quality variation through the supply chain (from farm to slaughter)? J Anim Sci. 2016;94:359-76. https://doi.org/10.2527/jas.2015-9176
  74. Van Laer E, Moons CPH, Sonck B, Tuyttens FAM. Importance of outdoor shelter for cattle in temperate climates. Livest Sci. 2014;159:87-101. https://doi.org/10.1016/j.livsci.2013.11.003
  75. Liu HW, Cao Y, Zhou DW. Effects of shade on welfare and meat quality of grazing sheep under high ambient temperature. J Anim Sci. 2012;90:4764-70. https://doi.org/10.2527/jas.2012-5361
  76. DiGiacomo K, Warner RD, Leury BJ, Gaughan JB, Dunshea FR. Dietary betaine supplementation has energy-sparing effects in feedlot cattle during summer, particularly in those without access to shade. Anim Prod Sci. 2014;54:450-8. https://doi.org/10.1071/AN13418
  77. Aggarwal A, Upadhyay R. Heat stress and animal productivity. New Delhi: Springer; 2013.
  78. Xing T, Xu X, Jiang N, Deng S. Effect of transportation and pre-slaughter water shower spray with resting on AMP-activated protein kinase, glycolysis and meat quality of broilers during summer. Anim Sci J. 2016;87:299-307. https://doi.org/10.1111/asj.12426
  79. Driessen B, Van Beirendonck S, Buyse J. Effects of housing, short distance transport and lairage on meat quality of finisher pigs. Animals. 2020;10:788. https://doi.org/10.3390/ani10050788
  80. Albert F, Kovacs-Weber M, Bodnar A, Pajor F, Egerszegi I. Seasonal effects on the performance of finishing pigs' carcass and meat quality in indoor environments. Animals. 2024;14:259. https://doi.org/10.3390/ani14020259
  81. Pasquale V. Effects of space allowance on behaviour, physiology, skin lesions and meat quality of pigs transported in an actively ventilated vehicle in the summer and winter [Master's thesis]. Ontario: University of Guelph; 2022.
  82. Arsenoaia VN, Malancus RN. Indicators of pre-slaughter stress in pigs and their impact on meat quality. J Appl Life Sci Environ. 2023;56:15-23. https://doi.org/10.46909/alse-561082
  83. Liu F, Celi P, Chauhan SS, Cottrell JJ, Leury BJ, Dunshea FR. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs. Asian-Australas J Anim Sci. 2018;31:263-9. https://doi.org/10.5713/ajas.17.0256
  84. Baldi G, Chauhan SS, Linden N, Dunshea FR, Hopkins DL, Sgoifo Rossi CA, et al. Comparison of a grain-based diet supplemented with synthetic vitamin E versus a lucerne (alfalfa) hay-based diet fed to lambs in terms of carcass traits, muscle vitamin E, fatty acid content, lipid oxidation, and retail colour of meat. Meat Sci. 2019;148:105-12. https://doi.org/10.1016/j.meatsci.2018.10.013
  85. Shakeri M, Cottrell JJ, Wilkinson S, Le HH, Suleria HAR, Warner RD, et al. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants. 2019;8:336. https://doi.org/10.3390/antiox8090336
  86. Fu Q, Leng ZX, Ding LR, Wang T, Wen C, Zhou YM. Complete replacement of supplemental DL-methionine by betaine affects meat quality and amino acid contents in broilers. Anim Feed Sci Technol. 2016;212:63-9. https://doi.org/10.1016/j.anifeedsci.2015.12.004
  87. He S, Zhao S, Dai S, Liu D, Bokhari SG. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim Sci J. 2015;86:897-903. https://doi.org/10.1111/asj.12372
  88. Sahin K, Ozbey O, Onderci M, Cikim G, Aysondu MH. Chromium supplementation can alleviate negative effects of heat stress on egg production, egg quality and some serum metabolites of laying Japanese quail. J Nutr. 2002;132:1265-8. https://doi.org/10.1093/jn/132.6.1265
  89. Zhang C, Wang L, Zhao XH, Chen XY, Yang L, Geng ZY. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poult Sci. 2017;96:2219-25. https://doi.org/10.3382/ps/pex004
  90. Hutchings NJ, Sorensen P, Cordovil CMS, Leip A, Amon B. Measures to increase the nitrogen use efficiency of European agricultural production. Glob Food Secur. 2020;26:100381. https://doi.org/10.1016/j.gfs.2020.100381
  91. Adegbeye MJ, Salem AZM, Reddy PRK, Elghandour MMM, Oyebamiji KJ. Waste recycling for the eco-friendly input use efficiency in agriculture and livestock feeding. In: Kumar S, Meena RS, Jhariya MK, editors. Resources use efficiency in agriculture. Singapore: Springer; 2020. p. 1-45.
  92. Gerber PJ, Uwizeye A, Schulte RPO, Opio CI, de Boer IJM. Nutrient use efficiency: a valuable approach to benchmark the sustainability of nutrient use in global livestock production? Curr Opin Environ Sustain. 2014;9-10:122-30. https://doi.org/10.1016/j.cosust.2014.09.007
  93. Ponnampalam EN, Holman BWB. Sustainability II: sustainable animal production and meat processing. In: Toldra F, editor. Lawrie's meat sci. 9th ed. Cambridge, MA: Woodhead Publishing; 2023. p. 727-98.
  94. Morota G, Ventura RV, Silva FF, Koyama M, Fernando SC. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: machine learning and data mining advance predictive big data analysis in precision animal agriculture. J Anim Sci. 2018;96:1540-50. https://doi.org/10.1093/jas/sky014
  95. Singh M, Kumar R, Tandon D, Sood P, Sharma M. Artificial intelligence and IOT based monitoring of poultry health: a review. In: 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat); 2020; Batam, Indonesia. p. 50-4.
  96. Neethirajan S, Kemp B. Digital livestock farming. Sens Biosensing Res. 2021;32:100408. https://doi.org/10.1016/j.sbsr.2021.100408
  97. Loudon KMW, Tarr G, Pethick DW, Lean IJ, Polkinghorne R, Mason M, et al. The use of biochemical measurements to identify pre-slaughter stress in pasture finished beef cattle. Animals. 2019;9:503. https://doi.org/10.3390/ani9080503
  98. Marco-Ramell A, Pato R, Pena R, Saco Y, Manteca X, Ruiz de la Torre JL, et al. Identification of serum stress biomarkers in pigs housed at different stocking densities. Vet J. 2011;190:e66-71. https://doi.org/10.1016/j.tvjl.2011.01.003
  99. Xing T, Wang MF, Han MY, Zhu XS, Xu XL, Zhou GH. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal. 2017;11:1599-607. https://doi.org/10.1017/S1751731116002809
  100. Kumar P, Ahmed MA, Abubakar AA, Hayat MN, Kaka U, Ajat M, et al. Improving animal welfare status and meat quality through assessment of stress biomarkers: a critical review. Meat Sci. 2023;197:109048. https://doi.org/10.1016/j.meatsci.2022.109048
  101. Cowton J, Kyriazakis I, Plotz T, Bacardit J. A combined deep learning gru-autoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors. Sensors. 2018;18:2521. https://doi.org/10.3390/s18082521
  102. Jorquera-Chavez M, Fuentes S, Dunshea FR, Warner RD, Poblete T, Jongman EC. Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals. 2019;9:1089. https://doi.org/10.3390/ani9121089
  103. Gruber SL, Tatum JD, Engle TE, Chapman PL, Belk KE, Smith GC. Relationships of behavioral and physiological symptoms of preslaughter stress to beef longissimus muscle tenderness. J Anim Sci. 2010;88:1148-59. https://doi.org/10.2527/jas.2009-2183
  104. Seibert JT, Abuajamieh M, Sanz Fernandez MV, Johnson JS, Kvidera SK, Horst EA, et al. Effects of heat stress and insulin sensitizers on pig adipose tissue. J Anim Sci. 2018;96:510-20. https://doi.org/10.1093/jas/skx067
  105. Shi ZB, Ma XY, Zheng CT, Hu YJ, Yang XF, Gao KG, et al. Effects of high ambient temperature on meat quality, serum hormone concentrations, and gene expression in the longissimus dorsi muscle of finishing pigs. Anim Prod Sci. 57:1031-9. https://doi.org/10.1071/AN15003
  106. Cruzen SM, Baumgard LH, Gabler NK, Pearce SC, Lonergan SM. Temporal proteomic response to acute heat stress in the porcine muscle sarcoplasm. J Anim Sci. 2017;95:3961-71. https://doi.org/10.2527/jas.2017.1375
  107. Yang P, Hao Y, Feng J, Lin H, Feng Y, Wu X, et al. The expression of carnosine and its effect on the antioxidant capacity of longissimus dorsi muscle in finishing pigs exposed to constant heat stress. Asian-Australas J Anim Sci. 2014;27:1763-72. https://doi.org/10.5713/ajas.2014.14063
  108. Kadim IT, Mahgoub O, Khalaf S. Effects of the transportation during hot season and electrical stimulation on meat quality characteristics of goat Longissimus dorsi muscle. Small Rumin Res. 2014;121:120-4. https://doi.org/10.1016/j.smallrumres.2014.01.010
  109. Kadim IT, Al-Qamshui BHA, Mahgoub O, Al-Marzooqi W, Johnson EH. Effect of seasonal temperatures and ascorbic acid supplementation on performance of broiler chickens maintained in closed and open-sided houses. Int J Poult Sci. 2008;7:655-60. https://doi.org/10.3923/ijps.2008.655.660