DOI QR코드

DOI QR Code

Standardized ileal digestible methionine requirements for 22 to 29-d-old male broilers based on the growth performance and feather development

  • Su Hyun An (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Changsu Kong (Department of Animal Science and Biotechnology, Kyungpook National University)
  • Received : 2023.08.22
  • Accepted : 2023.12.22
  • Published : 2024.05.31

Abstract

The aim of the present experiment was to determine the standardized ileal digestible (SID) methionine (Met) requirement during the grower phase (22 to 29 days). A total of 192 Ross 308 male broilers (745 ± 50.5 g) were assigned to six dietary treatments in a randomized complete block design, with eight replicate cages per treatment. The experimental diets were formulated based on corn, soybean meal, and synthetic amino acids (AA), with different levels of dietary SID Met ranging from 0.40% to 0.65%, in increments of 0.05%. Individual body weight and feed intake per cage were measured at the beginning and end of the experimental period. Weight gain (g/bird), feed intake (g/bird), gain-to-feed ratio (g/kg), feather weight (g), and relative feather percentage (% of body weight) were analyzed for linear or quadratic responses using orthogonal polynomial contrasts. Final body weight, weight gain, and feed intake increased quadratically as dietary SID Met concentration increased (p < 0.05). However, the composition of AA in the feathers showed no quadratic or linear effect based on dietary SID Met concentrations, except for Ile (p = 0.05; quadratic). The SID Met requirements for optimum and maximum weight gain of 22 to 29-days-old male broilers were estimated using the broken-line and quadratic-line models to 0.45% and 0.55%, respectively.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No.RS-2019-RD008894)" Rural Development Administration, Korea.

References

  1. Fernandez SR, Aoyagi S, Han Y, Parsons CM, Baker DH. Limiting order of amino acids in corn and soybean meal for growth of the chick. Poult Sci. 1994;73:1887-96. https://doi.org/10.3382/ps.0731887
  2. Pacheco LG, Sakomura NK, Suzuki RM, Dorigam JCP, Viana GS, Van Milgen J, et al. Methionine to cystine ratio in the total sulfur amino acid requirements and sulfur amino acid metabolism using labelled amino acid approach for broilers. BMC Vet Res. 2018;14:364. https://doi.org/10.1186/s12917-018-1677-8
  3. Wheeler KB, Latshaw JD. Sulfur amino acid requirements and interactions in broilers during two growth periods. Poult Sci. 1981;60:228-36. https://doi.org/10.3382/ps.0600228
  4. Pack M, Schutte JB. Sulfur amino acid requirement of broiler chicks from fourteen to thirty-eight days of age: 2. economic evaluation. Poult Sci. 1995;74:488-93. https://doi.org/10.3382/ps.0740488
  5. Baker DH, Fernandez SR, Webel DM, Parsons CM. Sulfur amino acid requirement and cystine replacement value of broiler chicks during the period three to six weeks posthatching. Poult Sci. 1996;75:737-42. https://doi.org/10.3382/ps.0750737
  6. Aftab U, Ashraf M. Methionine+cystine requirement of broiler chickens fed low-density diets under tropical conditions. Trop Anim Health Prod. 2009;41:363-9. https://doi.org/10.1007/s11250-008-9197-3
  7. de Castro Goulart C, Costa FGP, da Silva JHV, de Souza JG, Rodrigues VP, de Oliveira CFS. Requirements of digestible methionine + cystine for broiler chickens at 1 to 42 days of age. Rev Bras Zootec. 2011;40:797-803. https://doi.org/10.1590/S1516-35982011000400013
  8. Kim JH, Cho WT, Yang CJ, Shin IS, Han IK. Partition of amino acids requirement for maintenance and growth of broilers II. methionine. Asian-Australas J Anim Sci. 1997;10:277-83. https://doi.org/10.5713/ajas.1997.277
  9. Chamruspollert M, Pesti GM, Bakalli RI. Determination of the methionine requirement of male and female broiler chicks using an indirect amino acid oxidation method. Poult Sci. 2002;81:1004-13. https://doi.org/10.1093/ps/81.7.1004
  10. Mulyantini NGA. Digestible methionine requirement for performance and carcass yield of broiler finisher. In: Proceedings of the 5th International Seminar on Tropical Animal Production (ISTAP); 2010; Yogyakarta, Indonesia.
  11. Li L, Abouelezz KFM, Cheng Z, Gad-Elkareem AEG, Fan Q, Ding F,et al. Modelling methionine requirements of fast- and slow-growing chinese yellow-feathered chickens during the starter phase. Animals. 2020;10:443. https://doi.org/10.3390/ani10030443
  12. Tallentire CW, Leinonen I, Kyriazakis I. Breeding for efficiency in the broiler chicken: a review. Agron Sustain Dev. 2016;36:66. https://doi.org/10.1007/s13593-016-0398-2
  13. NRC [National Research Council]. 1994. Nutrient requirements of poultry. 9th rev. ed. Washington, DC: National Academy Press.
  14. Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, Perazzo FG, et al. Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements. 4th ed. Vicosa, MG: Vicosa: Departamento de Zootecnia, Universidade Federal de Vicosa.
  15. Featherston WR, Rogler JC. Methionine-cystine interrelations in chicks fed diets containing suboptimal levels of methionine. J Nutr. 1978;108:1954-8. https://doi.org/10.1093/jn/108.12.1954
  16. Ullrich C, Langeheine M, Brehm R, Taube V, Rosillo Galera M, Rohn K, et al. Influence of different methionine sources on performance and slaughter characteristics of broilers. Animals. 2019;9:984. https://doi.org/10.3390/ani9110984
  17. Sklan D, Noy Y. Crude protein and essential amino acid requirements in chicks during the first week posthatch. Br Poult Sci. 2003;44:266-74. https://doi.org/10.1080/0007166031000124586
  18. Mbajiorgu CA, Ng'ambi JW, Norris DD. Voluntary feed intake and nutrient composition in chickens. Asian J Anim Vet Adv. 2011;6:20-8. https://doi.org/10.3923/ajava.2011.20.28
  19. Deschutter A, Leeson S. Feather growth and development. Worlds Poult Sci J. 1986;42:259-67. https://doi.org/10.1079/WPS19860020
  20. Kalinowski A, Moran ET Jr, Wyatt CL. Methionine and cystine requirements of slow- and fast-feathering broiler males from three to six weeks of age. Poult Sci. 2003;82:1428-37. https://doi.org/10.1093/ps/82.9.1428
  21. van Emous RA, van Krimpen MM. Effects of nutritional interventions on feathering of poultry - a review. In: Olukosi OA, Olori VE, Helmbrecht A, Lambton S, French NA, editors. Poultry feathers and skin: the poultry integument in health and welfare. Oxfordshire: CABI; 2019. p. 133-50.
  22. Leeson S, Walsh T. Feathering in commercial poultry II. Factors influencing feather growth and feather loss. Worlds Poult Sci J. 2004;60:52-63. https://doi.org/10.1079/WPS20034
  23. Aviagen. Ross 308 broiler: performance objectives [Internet]. 2022 [cited 2023 Apr 15]. https://aviagen.com/assets/Tech_Center/Ross_Broiler/RossxRoss308-BroilerPerformanceObjectives2022-EN.pdf
  24. Hoehler D, Lemme A, Ravindran V, Bryden WL, Rostagno HS. Feed formulation in broiler chickens based on standardized ileal amino acid digestibility. In: Proceedings of Advances in Aquaculture Nutrition VIII. VIII International Symposium on Aquatic Nutrition; 2006; Monterrey, New Lion, Mexico.
  25. Kong C, Adeola O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas J Anim Sci. 2014;27:917-25. https://doi.org/10.5713/ajas.2014.r.02
  26. An SH, Sung JY, Kang HK, Kong C. Additivity of ileal amino acid digestibility in diets containing corn, soybean meal, and corn distillers dried grains with solubles for male broilers. Animals. 2020;10:933. https://doi.org/10.3390/ani10060933
  27. An SH, Kang HK, Kong C. Standardized ileal digestible lysine requirements of 21-28 days old male broilers. Anim Feed Sci Technol. 2022;292:115409. https://doi.org/10.1016/j.anifeedsci.2022.115409
  28. AOAC [Association of Officissssal Analytical Chemist] International. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2006.
  29. Robbins KR, Saxton AM, Southern LL. Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci. 2006;84:E155-65. https://doi.org/10.2527/2006.8413_supple155x
  30. Baker DH. Ideal amino acid patterns for broiler chicks. In: D'Mello JPF, editor. Amino acids in animal nutrition. Wallingford: CABI; 2003. p. 223-35.
  31. Abdollahi MR, Zaefarian F, Ravindran V. Feed intake response of broilers: impact of feed processing. Anim Feed Sci Technol. 2018;237:154-65. https://doi.org/10.1016/j.anifeedsci.2018.01.013
  32. Hamungalu O, Zaefarian F, Abdollahi MR, Ravindran V. Performance response of broilers to feeding pelleted diets is influenced by dietary nutrient density. Anim Feed Sci Technol. 2020;268:114613. https://doi.org/10.1016/j.anifeedsci.2020.114613
  33. D'Mello JPF. Responses of growing poultry to amino acids. In: D'Mello JPF, editor. Amino acids in animal nutrition. Wallingford: CABI; 2003. p. 237-63.
  34. Moran ET Jr. Cystine requirement of feather-sexed broiler chickens with sex and age. Poult Sci. 1981;60:1056-61. https://doi.org/10.3382/ps.0601056
  35. Fisher M, Leeson S, Morrison WD, Summers JD. Feather growth and feather composition of broiler chickens. Can J Anim Sci. 1981;61:769-73. https://doi.org/10.4141/cjas81-093
  36. Conde-Aguilera JA, Cobo-Ortega C, Tesseraud S, Lessire M, Mercier Y, van Milgen J. Changes in body composition in broilers by a sulfur amino acid deficiency during growth. Poult Sci. 2013;92:1266-75. https://doi.org/10.3382/ps.2012-02796
  37. Adler SA, Slizyte R, Honkapaa K, Loes AK. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poult Sci. 2018;97:3343-57. https://doi.org/10.3382/ps/pey175
  38. Wecke C, Khan DR, Sunder A, Liebert F. Age and gender depending growth of feathers and feather-free body in modern fast growing meat-type chickens. Open J Anim Sci. 2017;7:376-92. https://doi.org/10.4236/ojas.2017.74029
  39. Greenhalgh S, Chrystal PV, Selle PH, Liu SY. Reduced-crude protein diets in chicken-meat production: justification for an imperative. Worlds Poult Sci J. 2020;76:537-48. https://doi.org/10.1080/00439339.2020.1789024
  40. Selle PH, Macelline SP, Chrystal PV, Liu SY. A reappraisal of amino acids in broiler chicken nutrition. Worlds Poult Sci J. 2023;79:429-47. https://doi.org/10.1080/00439339.2023.2234342
  41. Vargas L, Sakomura NK, Leme BB, Antayhua F, Reis M, Gous R, et al. A description of the potential growth and body composition of two commercial broiler strains. Br Poult Sci. 2020;61:266-73. https://doi.org/10.1080/00071668.2020.1716300
  42. Farran MT, Thomas OP. Valine deficiency: 1. The effect of feeding a valine-deficient diet during the starter period on performance and feather structure of male broiler chicks. Poult Sci. 1992;71:1879-84. https://doi.org/10.3382/ps.0711879
  43. Stilborn HL, Moran ET Jr, Gous RM, Harrison MD. Effect of age on feather amino acid content in two broiler strain crosses and sexes. J Appl Poult Res. 1997;6:205-9. https://doi.org/10.1093/japr/6.2.205
  44. Reis MDP, Sakomura NK, Teixeira IAMA, da Silva EP, Kebreab E. Partitioning the efficiency of utilization of amino acids in growing broilers: multiple linear regression and multivariate approaches. PLOS ONE. 2018;13:e0208488. https://doi.org/10.1371/journal.pone.0208488
  45. Abebe S, Morris TR. Note on the effects of protein concentration on responses to dietary lysine by chicks. Br Poult Sci. 1990;31:255-60. https://doi.org/10.1080/00071669008417255