DOI QR코드

DOI QR Code

Effects of diets for three growing stages by rumen inocula donors on in vitro rumen fermentation and microbiome

  • Ryukseok Kang (Department of Animal Science and Technology, Chung-Ang University) ;
  • Huseong Lee (Division of Animal Science, Chonnam National University) ;
  • Hyeonsu Seon (Division of Animal Science, Chonnam National University) ;
  • Cheolju Park (Division of Animal Science, Chonnam National University) ;
  • Jaeyong Song (Nonghyup Feed Co., LTD.) ;
  • Joong Kook Park (Nonghyup Feed Co., LTD.) ;
  • Yong Kwan Kim (Seogwiposi Chuckhyup) ;
  • Minseok Kim (Division of Animal Science, Chonnam National University) ;
  • Tansol Park (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2023.08.17
  • Accepted : 2023.10.10
  • Published : 2024.05.31

Abstract

Hanwoo and Jeju Black cattle (Jeju Black) are native breeds of Korean cattle. Jeju Black cattle are recognized as natural monuments and are known to exhibit slower growth rates compared to Hanwoo. While several studies have analyzed the genetic characteristics of these cattle, there has been limited research on the differences in their microbiome. In this study, rumen fluid was obtained from three Hanwoo steers and three Jeju Black steers, and three different diets (total mixed rations [TMRs] for growing, early fattening, and late fattening periods) were used as substrates for in vitro fermentation. The in vitro incubation was conducted for 3 h and 24 h following a 2 × 3 factorial arrangement. After both incubation periods, fermentation characteristics were analyzed, and ruminal microbiome analysis was performed using 16S rRNA gene sequencing, employing both QIIME2 and PICRUSt2. The results revealed significant differences in the ruminal microbiota due to the inoculum effect. At the phylum level, Patescibacteria and Synergistota were found to be enriched in the Jeju Black inoculum-treated group. Additionally, using different inocula also affected the relative abundance of major taxa, including Ruminococcus, Pseudoramibacter, Ruminococcaceae CAG-352, and the [Eubacterium] ruminantium group. These microbial differences induced by the inoculum may have originated from varying levels of domestication between the two subspecies of donor animals, which mainly influenced the fermentation and microbiome features in the early incubation stages, although this was only partially offset afterward. Furthermore, predicted commission numbers of microbial enzymes, some of which are involved in the biosynthesis of secondary metabolites, fatty acids, and alpha amylase, differed based on the inoculum effect. However, these differences may account for only a small proportion of the overall metabolic pathway. Conversely, diets were found to affect protein biosynthesis and its related metabolism, which showed differential abundance in the growing diet and were potentially linked to the growth-promoting effects in beef cattle during the growing period. In conclusion, this study demonstrated that using different inocula significantly affected in vitro fermentation characteristics and microbiome features, mainly in the early stages of incubation, with some effects persisting up to 24 h of incubation.

Keywords

Acknowledgement

This work was supported by a grant (715003-07) from the Research Center for Production Management and Technical Development for High Quality Livestock Products through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, Ministry of Agriculture, Food and Rural Affairs. This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2023.

References

  1. Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56:2. https://doi.org/10.1186/2055-0391-56-2 
  2. Suh S, Kim YS, Cho CY, Byun MJ, Choi SB, Ko YG, et al. Assessment of genetic diversity, relationships and structure among korean native cattle breeds using microsatellite markers. Asian-Australas J Anim Sci. 2014;27:1548-53. https://doi.org/10.5713/ajas.2014.14435 
  3. Sharma A, Lee SH, Lim D, Chai HH, Choi BH, Cho Y. A genome-wide assessment of genetic diversity and population structure of Korean native cattle breeds. BMC Genet. 2016;17:139. https://doi.org/10.1186/s12863-016-0444-8 
  4. Alam MZ, Lee YM, Son HJ, Hanna LH, Riley DG, Mannen H, et al. Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms. Anim Biosci. 2021;34:789-800. https://doi.org/10.5713/ajas.19.0888 
  5. Strucken EM, Lee SH, Jang GW, Porto-Neto LR, Gondro C. Towards breed formation by island model divergence in Korean cattle. BMC Evol Biol. 2015;15:284. https://doi.org/10.1186/s12862-015-0563-2 
  6. Jo C, Cho S, Chang J, Nam KC. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Anim Front. 2012;2:32-8. https://doi.org/10.2527/af.2012-0060 
  7. Shriver BJ, Hoover WH, Sargent JP, Crawford RJ Jr, Thayne WV. Fermentation of a high concentrate diet as affected by ruminal ph and digesta flow. J Dairy Sci. 1986;69:413-9. https://doi.org/10.3168/jds.S0022-0302(86)80419-2 
  8. Russell JB. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J Dairy Sci. 1998;81:3222-30. https://doi.org/10.3168/jds.S0022-0302(98)75886-2 
  9. Calsamiglia S, Cardozo PW, Ferret A, Bach A. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J Anim Sci. 2008;86:702-11. https://doi.org/10.2527/jas.2007-0146 
  10. Baldwin RL, McLeod KR. Effects of diet forage: concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. J Anim Sci. 2000;78:771-83. https://doi.org/10.2527/2000.783771x 
  11. Tamminga S, Bannink A, Dijkstra J, Zom RLG. Feeding strategies to reduce methane loss in cattle. Lelystad: Animal Sciences Group; 2007. Report No.: 34. 
  12. Cantalapiedra-Hijar G, Yáñez-Ruiz DR, Martin-Garcia AI, Molina-Alcaide E. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. J Anim Sci. 2009;87:622-31. https://doi.org/10.2527/jas.2008-1142 
  13. Yanez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O'Kiely P, et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants-a review. Anim Feed Sci Technol. 2016;216:1-18. https://doi.org/10.1016/j.anifeedsci.2016.03.016 
  14. Kittelmann S, Pinares-Patino CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC, et al. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLOS ONE. 2014;9:e103171. https://doi.org/10.1371/journal.pone.0103171 
  15. Boguhn J, Zuber T, Rodehutscord M. Effect of donor animals and their diet on in vitro nutrient degradation and microbial protein synthesis using grass and corn silages. J Anim Physiol Anim Nutr. 2013;97:547-57. https://doi.org/10.1111/j.1439-0396.2012.01295.x 
  16. Waghorn GC, Woodward SL, Tavendale M, Clark DA. Inconsistencies in rumen methane production-effects of forage composition and animal genotype. Int Congr Ser. 2006;1293:115-8. https://doi.org/10.1016/j.ics.2006.03.004 
  17. Yan T, Agnew RE, Gordon FJ, Porter MG. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest Prod Sci. 2000;64:253-63. https://doi.org/10.1016/S0301-6226(99)00145-1 
  18. Martinez ME, Ranilla MJ, Tejido ML, Saro C, Carro MD. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim Feed Sci Technol. 2010;158:126-35. https://doi.org/10.1016/j.anifeedsci.2010.04.005 
  19. Troelsen JE, Hanel DJ. Ruminant digestion in vitro as affected by inoculum donor, collection day, and fermentation time. Can J Anim Sci. 1966;46:149-56. https://doi.org/10.4141/cjas66-022 
  20. National Research Council. Nutrient requirements of domestic animals: nutrient requirements of beef cattle. Washington, DC: National Academy of Sciences, National Research Council; 1958. 
  21. McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J. 1948;43:99-109. https://doi.org/10.1042/bj0430099 
  22. AOAC [Association of Official Analytical Chemists] International. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2012. 
  23. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 
  24. Van Soest PJ. Collaborative study of acid-detergent fiber and lignin. J AOAC Int. 1973;56:781-4. https://doi.org/10.1093/jaoac/56.4.781 
  25. Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130 
  26. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS ONE. 2010;5:e15046. https://doi.org/10.1371/journal.pone.0015046 
  27. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9 
  28. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10-2. https://doi.org/10.14806/ej.17.1.200 
  29. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581-3. https://doi.org/10.1038/nmeth.3869 
  30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825-30. 
  31. Kaehler BD, Bokulich NA, McDonald D, Knight R, Caporaso JG, Huttley GA. Species abundance information improves sequence taxonomy classification accuracy. Nat Commun. 2019;10:4643. https://doi.org/10.1038/s41467-019-12669-6 
  32. Xia Y. q2-repeat-rarefy: QIIME2 plugin for generating the average rarefied table for library size normalization using repeated rarefaction [Internet]. GitHub Repository. 2021 [cited 2023 Jul 9]. https://github.com/yxia0125/q2-repeat-rarefy 
  33. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228-35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 
  34. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685-8. https://doi.org/10.1038/s41587-020-0548-6 
  35. Tang Y, Horikoshi M, Li W. ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8:474-85. https://doi.org/10.32614/RJ-2016-060 
  36. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 
  37. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput Biol. 2021;17:e1009442. https://doi.org/10.1371/journal.pcbi.1009442 
  38. Paz HA, Anderson CL, Muller MJ, Kononoff PJ, Fernando SC. Rumen bacterial community composition in holstein and jersey cows is different under same dietary condition and is not affected by sampling method. Front Microbiol. 2016;7:1206. https://doi.org/10.3389/fmicb.2016.01206 
  39. Latham EA, Weldon KK, Wickersham TA, Coverdale JA, Pinchak WE. Responses in the rumen microbiome of Bos taurus and indicus steers fed a low-quality rice straw diet and supplemented protein. J Anim Sci. 2018;96:1032-44. https://doi.org/10.1093/jas/sky023 
  40. Hagey JV, Laabs M, Maga EA, DePeters EJ. Rumen sampling methods bias bacterial communities observed. PLOS ONE. 2022;17:e0258176. https://doi.org/10.1371/journal.pone.0258176 
  41. Pinnell LJ, Reyes AA, Wolfe CA, Weinroth MD, Metcalf JL, Delmore RJ, et al. Bacteroidetes and firmicutes drive differing microbial diversity and community composition among microenvironments in the bovine rumen. Front Vet Sci. 2022;9:897996. https://doi.org/10.3389/fvets.2022.897996 
  42. Szeligowska N, Cholewinska P, Czyz K, Wojnarowski K, Janczak M. Inter and intraspecies comparison of the level of selected bacterial phyla in in cattle and sheep based on feces. BMC Vet Res. 2021;17:224. https://doi.org/10.1186/s12917-021-02922-w 
  43. Pang K, Dai D, Yang Y, Wang X, Liu S, Huang W, et al. Effects of high concentrate rations on ruminal fermentation and microbiota of yaks. Front Microbiol. 2022;13:957152. https://doi.org/10.3389/fmicb.2022.957152 
  44. Pinares-Patino CS, McEwan JC, Dodds KG, Cardenas EA, Hegarty RS, Koolaard JP, et al. Repeatability of methane emissions from sheep. Anim Feed Sci Technol. 2011;166-167:210-8. https://doi.org/10.1016/j.anifeedsci.2011.04.068 
  45. Goopy JP, Donaldson A, Hegarty R, Vercoe PE, Haynes F, Barnett M, et al. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br J Nutr. 2014;111:578-85. https://doi.org/10.1017/S0007114513002936 
  46. Sijpesteijn AK. On Ruminococcus flavefaciens, a cellulose-decomposing: bacterium from the rumen of sheep and cattle. J Gen Microbiol. 1951;5:869-79. https://doi.org/10.1099/00221287-5-5-869 
  47. Flint HJ, Zhang JX, Martin J. Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr Microbiol. 1994;29:139-43. https://doi.org/10.1007/BF01570754 
  48. Morris EJ. Characteristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol Lett. 1988;51:113-7. https://doi.org/10.1111/j.1574-6968.1988.tb02980.x 
  49. Willems A, Collins MD. Pseudoramibacter. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kampfer P, Rainey FA, Whitman WB, editors. Bergey's manual of systematics of archaea and bacteria. Hoboken, NJ: John Wiley & Sons; 2015. 
  50. Ricci S, Pacifico C, Castillo-Lopez E, Rivera-Chacon R, Schwartz-Zimmermann HE, Reisinger N, et al. Progressive microbial adaptation of the bovine rumen and hindgut in response to a stepwise increase in dietary starch and the influence of phytogenic supplementation. Front Microbiol. 2022;13:920427. https://doi.org/10.3389/fmicb.2022.9204 27 
  51. Taguchi H, Koike S, Kobayashi Y, Cann IKO, Karita S. Partial characterization of structure and function of a xylanase gene from the rumen hemicellulolytic bacterium Eubacterium ruminantium. Anim Sci J. 2004;75:325-32. https://doi.org/10.1111/j.1740-0929.2004.00193.x 
  52. Wade WG. The genus Eubacterium and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The prokaryotes: a handbook on the biology of bacteria. 3rd ed. Vol. 4. New York, NY: Springer; 2006. p. 823-35. 
  53. Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf E, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLOS ONE. 2014;9:e90702. https://doi.org/10.1371/journal.pone.0090702 
  54. Patel TR, Jure KG, Jones GA. Catabolism of phloroglucinol by the rumen anaerobe coprococcus. Appl Environ Microbiol. 1981;42:1010-7. https://doi.org/10.1128/aem.42.6.1010-1017.1981 
  55. Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10:2958-72. https://doi.org/10.1038/ismej.2016.62 
  56. Holdeman LV, Moore WEC. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Bacteriol. 1974;24:260-77. https://doi.org/10.1099/00207713-24-2-260 
  57. Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629-45. https://doi.org/10.1038/s41579-018-0076-2 
  58. Zhu R, Wang DH, Zheng Y, Zou H, Fu SF. Understanding the mechanisms behind micro-aeration to enhance anaerobic digestion of corn straw. Fuel. 2022;318:123604. https://doi.org/10.1016/j.fuel.2022.123604 
  59. Vartoukian SR, Palmer RM, Wade WG. The division "Synergistes". Anaerobe. 2007;13:99-106. https://doi.org/10.1016/j.anaerobe.2007.05.004 
  60. Harper LA, Denmead OT, Freney JR, Byers FM. Direct measurements of methane emissions from grazing and feedlot cattle. J Anim Sci. 1999;77:1392-401. https://doi.org/10.2527/1999.7761392x 
  61. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, et al. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021;13:1875796. https://doi.org/10.1080/19490976.2021.1875796 
  62. Domingo MC, Huletsky A, Boissinot M, Bernard KA, Picard FJ, Bergeron MG. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int J Syst Evol Microbiol. 2008;58:1393-7. https://doi.org/10.1099/ijs.0.65259-0 
  63. Yin X, Ji S, Duan C, Tian P, Ju S, Yan H, et al. Age-related changes in the ruminal microbiota and their relationship with rumen fermentation in lambs. Front Microbiol. 2021;12:679135. https://doi.org/10.3389/fmicb.2021.679135 
  64. Tong J, Zhang H, Yang D, Zhang Y, Xiong B, Jiang L. Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows. PLOS ONE. 2018;13:e0198225. https://doi.org/10.1371/journal.pone.0198225 
  65. Mao S, Zhang R, Wang D, Zhu W. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res. 2012;8:237. https://doi.org/10.1186/1746-6148-8-237 
  66. Sun Z, Yu Z, Wang B. Perilla frutescens leaf alters the rumen microbial community of lactating dairy cows. Microorganisms. 2019;7:562. https://doi.org/10.3390/microorganisms7110562 
  67. Ludwig W, Schleifer KH, Whitman WB. Taxonomic outline of the phylum Firmicutes. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kampfer P, Rainey FA, Whitman WB, editors. Bergey's manual of systematics of archaea and bacteria. Hoboken, NJ: John Wiley & Sons; 2015. 
  68. Creevey CJ, Kelly WJ, Henderson G, Leahy SC. Determining the culturability of the rumen bacterial microbiome. Microb Biotechnol. 2014;7:467-79. https://doi.org/10.1111/1751-7915.12141 
  69. Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol. 2013;67:130-7. https://doi.org/10.1007/s00284-013-0336-3 
  70. Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol. 2019;10:1116. https://doi.org/10.3389/fmicb.2019.01116 
  71. Zhang J, Shi H, Wang Y, Cao Z, Yang H, Li S. Effect of limit-fed diets with different forage to concentrate ratios on fecal bacterial and archaeal community composition in Holstein heifers. Front Microbiol. 2018;9:976. https://doi.org/10.3389/fmicb.2018.00976 
  72. Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, et al. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res. 2015;43:9600-12. https://doi.org/10.1093/nar/gkv973 
  73. Siddons RC, Nolan JV, Beever DE, Macrae JC. Nitrogen digestion and metabolism in sheep consuming diets containing contrasting forms and levels of N. Br J Nutr. 1985;54:175-87. https://doi.org/10.1079/BJN19850103 
  74. Firkins JL, Berger LL, Merchen NR, Fahey GC Jr, Mulvaney RL. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. J Dairy Sci. 1987;70:2302-11. https://doi.org/10.3168/jds.S0022-0302(87)80290-4 
  75. Ibrahim EA, Ingalls JR. Microbial protein biosynthesis in the rumen. J Dairy Sci. 1972;55:971-8. https://doi.org/10.3168/jds.S0022-0302(72)85604-2 
  76. Storm E, Orskov ER, Smart R. The nutritive value of rumen micro-organisms in ruminants: 2. the apparent digestibility and net utilization of microbial N for growing lambs. Br J Nutr. 1983;50:471-8. https://doi.org/10.1079/BJN19830115 
  77. Kung L Jr, Rode LM. Amino acid metabolism in ruminants. Anim Feed Sci Technol. 1996;59:167-72. https://doi.org/10.1016/0377-8401(95)00897-7