DOI QR코드

DOI QR Code

Sperm hyperactivation and the CatSper channel: current understanding and future contribution of domestic animals

  • Jae Yeon Hwang (Department of Molecular Biology, Pusan National University)
  • 투고 : 2023.09.08
  • 심사 : 2023.11.29
  • 발행 : 2024.05.31

초록

In female tract, mammalian sperm develop hyperactivated motility which is a key physiological event for sperm to fertilize eggs. This motility change is triggered by Ca2+ influx via the sperm-specific Ca2+ channel, CatSper. Although previous studies in human and mice largely contributed to understanding CatSper and Ca2+ signaling for sperm hyperactivation, the differences on their activation mechanisms are not well understood yet. There are several studies to examine expression and significance of the CatSper channel in non-human and non-mouse models, such as domestic animals. In this review, I summarize key knowledge for the CatSper channel from previous studies and propose future aspects for CatSper study using sperm from domestic animals.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00210046).

참고문헌

  1. Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci. 2020;77:2029-48. https://doi.org/10.1007/s00018-019-03389-7 
  2. Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod. 2011;17:524-38. https://doi.org/10.1093/molehr/gar034 
  3. Wachten D, Jikeli JF, Kaupp UB. Sperm sensory signaling. Cold Spring Harb Perspect Biol. 2016;9:a028225. https://doi.org/10.1101/cshperspect.a028225 
  4. Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol. 2020;63:154-61. https://doi.org/10.1016/j.ceb.2020.01.015 
  5. Wang H, McGoldrick LL, Chung JJ. Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol. 2021;18:46-66. https://doi.org/10.1038/s41585-020-00390-9 
  6. Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697-8. https://doi.org/10.1038/168697b0 
  7. Austin CR. Observations on the penetration of the sperm into the mammalian egg. Aust J Biol Sci. 1951;4:581-96. https://doi.org/10.1071/BI9510581 
  8. Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil. 1970;23:193-6. https://doi.org/10.1530/jrf.0.0230193 
  9. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, et al. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413:603-9. https://doi.org/10.1038/35098027 
  10. Suarez SS, Varosi SM, Dai X. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl Acad Sci USA. 1993;90:4660-4. https://doi.org/10.1073/pnas.90.10.4660 
  11. Quill TA, Ren D, Clapham DE, Garbers DL. A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci. 2001;98:12527-31. https://doi.org/10.1073/pnas.221454998 
  12. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA. 2007;104:1219-23. https://doi.org/10.1073/pnas.0610286104 
  13. Wang H, Liu J, Cho KH, Ren D. A novel, single, transmembrane protein CATSPERG is associated with CATSPER1 channel protein. Biol Reprod. 2009;81:539-44. https://doi.org/10.1095/biolreprod.109.077107 
  14. Liu J, Xia J, Cho KH, Clapham DE, Ren D. CatSperβ, a novel transmembrane protein in the CatSper channel complex. J Biol Chem. 2007;282:18945-52. https://doi.org/10.1074/jbc.M701083200 
  15. Chung JJ, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE. A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun. 2011;2:153. https://doi.org/10.1038/ncomms1153 
  16. Chung JJ, Miki K, Kim D, Shim SH, Shi HF, Hwang JY, et al. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. elife. 2017;6:e23082. https://doi.org/10.7554/eLife.23082 
  17. Hwang JY, Mannowetz N, Zhang Y, Everley RA, Gygi SP, Bewersdorf J, et al. Dual sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell. 2019;177:1480-94. https://doi.org/10.1016/j.cell.2019.03.047 
  18. Lin S, Ke M, Zhang Y, Yan Z, Wu J. Structure of a mammalian sperm cation channel complex. Nature. 2021;595:746-50. https://doi.org/10.1038/s41586-021-03742-6 
  19. Zhao Y, Wang H, Wiesehoefer C, Shah NB, Reetz E, Hwang JY, et al. 3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nat Commun. 2022;13:3439. https://doi.org/10.1038/s41467-022-31050-8 
  20. Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014;157:808-22. https://doi.org/10.1016/j.cell.2014.02.056 
  21. Cai X, Wang X, Clapham DE. Early evolution of the eukaryotic Ca2+ signaling machinery: conservation of the CatSper channel complex. Mol Biol Evol. 2014;31:2735-40. https://doi.org/10.1093/molbev/msu218 
  22. Cai X, Clapham DE. Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperβ. PLOS ONE. 2008;3:e3569. https://doi.org/10.1371/journal.pone.0003569 
  23. Kirichok Y, Navarro B, Clapham DE. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature. 2006;439:737-40. https://doi.org/10.1038/nature04417 
  24. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell. 2010;140:327-37. https://doi.org/10.1016/j.cell.2009.12.053 
  25. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature. 2011;471:387-91. https://doi.org/10.1038/nature09767 
  26. Strunker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, et al. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 2011;471:382-6. https://doi.org/10.1038/nature09769 
  27. Yanagimachi R. In vitro capacitation of hamster spermatozoa by follicular fluid. J Reprod Fertil. 1969;18:275-86. https://doi.org/10.1530/jrf.0.0180275 
  28. Kay VJ, Robertson L. Hyperactivated motility of human spermatozoa: a review of physiological function and application in assisted reproduction. Hum Reprod Update. 1998;4:776-86. https://doi.org/10.1093/humupd/4.6.776 
  29. Suarez SS, Osman RA. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol Reprod. 1987;36:1191-8. https://doi.org/10.1095/biolreprod36.5.1191 
  30. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12:23-37. https://doi.org/10.1093/humupd/dmi047 
  31. Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53:1280-5. https://doi.org/10.1095/biolreprod53.6.1280 
  32. Yanagimachi R. Requirement of extracellular calcium ions for various stages of fertilization and fertilization-related phenomena in the hamster. Gamete Res. 1982;5:323-44. https://doi.org/10.1002/mrd.1120050404 
  33. Fraser LR. Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilization in vitro. J Reprod Fertil. 1987;81:77-89. https://doi.org/10.1530/jrf.0.0810077 
  34. Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol. 2002;250:208-17. https://doi.org/10.1006/dbio.2002.0797 
  35. Marquez B, Ignotz G, Suarez SS. Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev Biol. 2007;303:214-21. https://doi.org/10.1016/j.ydbio.2006.11.007 
  36. Darszon A, Labarca P, Nishigaki T, Espinosa F. Ion channels in sperm physiology. Physiol Rev. 1999;79:481-510. https://doi.org/10.1152/physrev.1999.79.2.481 
  37. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF. CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem. 2000;275:21210-7. https://doi.org/10.1074/jbc.M002068200 
  38. Trevino CL, Felix R, Castellano LE, Gutierrez C, Rodriguez D, Pacheco J, et al. Expression and ́ differential cell distribution of low-threshold Ca2+ channels in mammalian male germ cells and sperm. FEBS Lett. 2004;563:87-92. https://doi.org/10.1016/S0014-5793(04)00257-1 
  39. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012;74:453-75. https://doi.org/10.1146/annurev-physiol-020911-153258 
  40. Lobley A, Pierron V, Reynolds L, Allen L, Michalovich D. Identification of human and mouse CatSper3 and CatSper4 genes: characterisation of a common interaction domain and evidence for expression in testis. Reprod Biol Endocrinol. 2003;1:53. https://doi.org/10.1186/1477-7827-1-53 
  41. Hwang JY, Chung JJ. CatSper calcium channels: 20 years on. Physiology. 2023;38:125-40. https://doi.org/10.1152/physiol.00028.2022 
  42. Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA. 2003;100:14869-74. https://doi.org/10.1073/pnas.2136654100 
  43. Jin J, Jin N, Zheng H, Ro S, Tafolla D, Sanders KM, et al. Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod. 2007;77:37-44. https://doi.org/10.1095/biolreprod.107.060186 
  44. Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, et al. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. Proc Natl Acad Sci USA. 2023;120:e2304409120. https://doi.org/10.1073/pnas.2304409120 
  45. Ded L, Hwang JY, Miki K, Shi HF, Chung JJ. 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. elife. 2020;9:e62043. https://doi.org/10.7554/eLife.62043 
  46. Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505-10. https://doi.org/10.1016/j.ajhg.2009.03.004 
  47. Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H, Wachten D, et al. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J. 2020;39:e102363. https://doi.org/10.15252/embj.2019102363 
  48. Avidan N, Tamary H, Dgany O, Cattan D, Pariente A, Thulliez M, et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet. 2003;11:497-502. https://doi.org/10.1038/sj.ejhg.5200991 
  49. Luo T, Chen HY, Zou QX, Wang T, Cheng YM, Wang HF, et al. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum Reprod. 2019;34:414-23. https://doi.org/10.1093/humrep/dey377 
  50. Smith JF, Syritsyna O, Fellous M, Serres C, Mannowetz N, Kirichok Y, et al. Disruption of the principal, progesterone-activated sperm Ca2+ channel in a CatSper2-deficient infertile patient. Proc Natl Acad Sci USA. 2013;110:6823-8. https://doi.org/10.1073/pnas.1216588110 
  51. Brown SG, Miller MR, Lishko PV, Lester DH, Publicover SJ, Barratt CLR, et al. Homozygous in-frame deletion in CATSPERE in a man producing spermatozoa with loss of CatSper function and compromised fertilizing capacity. Hum Reprod. 2018;33:1812-6. https://doi.org/10.1093/humrep/dey278 
  52. Oud MS, Okutman O, Hendricks LAJ, de Vries PF, Houston BJ, Vissers LELM, et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod. 2020;35:240-52. https://doi.org/10.1093/humrep/dez246 
  53. Hwang JY, Wang H, Lu Y, Ikawa M, Chung JJ. C2cd6-encoded CatSperτ targets sperm calcium channel to Ca2+ signaling domains in the flagellar membrane. Cell Rep. 2022;38:110226. https://doi.org/10.1016/j.celrep.2021.110226 
  54. Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98:466-81. https://doi.org/10.1016/j.neuron.2018.03.017 
  55. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol. 2003;5:1117-22. https://doi.org/10.1038/ncb1072 
  56. Chen SR, Chen M, Deng SL, Hao XX, Wang XX, Liu YX. Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis. 2016;7:e2152. https://doi.org/10.1038/cddis.2016.65 
  57. Hwang JY, Maziarz J, Wagner GP, Chung JJ. Molecular evolution of CatSper in mammals and function of sperm hyperactivation in gray short-tailed opossum. Cells. 2021;10:1047. https://doi.org/10.3390/cells10051047 
  58. Wang T, Young S, Krenz H, Tuttelmann F, Ropke A, Krallmann C, et al. The Ca2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. J Biol Chem. 2020;295:13181-93. https://doi.org/10.1074/jbc.RA120.013218 
  59. Berger TK, Fussholler DM, Goodwin N, Bonigk W, Muller A, Dokani Khesroshahi N, et al. Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating. J Physiol. 2017;595:1533-46. https://doi.org/10.1113/JP273189 
  60. Miller MR, Mannowetz N, Iavarone AT, Safavi R, Gracheva EO, Smith JF, et al. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science. 2016;352:555-9. https://doi.org/10.1126/science.aad6887 
  61. Sumigama S, Mansell S, Miller M, Lishko PV, Cherr GN, Meyers SA, et al. Progesterone accelerates the completion of sperm capacitation and activates CatSper channel in spermatozoa from the rhesus macaque. Biol Reprod. 2015;93:130. https://doi.org/10.1095/biolreprod.115.129783 
  62. Singh JP, Babcock DF, Lardy HA. Motility activation, respiratory stimulation, and alteration of Ca2+ transport in bovine sperm treated with amine local anesthetics and calcium transport antagonists. Arch Biochem Biophys. 1983;221:291-303. https://doi.org/10.1016/0003- 9861(83)90146-7 
  63. Lefebvre R, Suarez SS. Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol Reprod. 1996;54:575-82. https://doi.org/10.1095/biolreprod54.3.575 
  64. Suarez SS. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim. 2002; 37:140-3. https://doi.org/10.1046/j.1439-0531.2002.00346.x 
  65. Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590-6. https://doi.org/10.1095/biolreprod.102.011320 
  66. Marquez B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. Biol Reprod. 2007;76:660-5. https://doi.org/10.1095/biolreprod.106.055038 
  67. Johnson GP, English AM, Cronin S, Hoey DA, Meade KG, Fair S. Genomic identification, expression profiling, and functional characterization of CatSper channels in the bovine. Biol Reprod. 2017;97:302-12. https://doi.org/10.1093/biolre/iox082 
  68. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23:443-52. https://doi.org/10.1016/j.cub.2013.02.007 
  69. Romero-Aguirregomezcorta J, Cronin S, Donnellan E, Fair S. Progesterone induces the release of bull spermatozoa from oviductal epithelial cells. Reprod Fertil Dev. 2019;31:1463-72. https://doi.org/10.1071/RD18316 
  70. Nagai T, Niwa K, Iritani A. Effect of sperm concentration during preincubation in a defined medium on fertilization in vitro of pig follicular oocytes. J Reprod Fertil. 1984;70:271-5. https://doi.org/10.1530/jrf.0.0700271 
  71. Suarez SS, Dai XB, DeMott RP, Redfern K, Mirando MA. Movement characteristics of boar sperm obtained from the oviduct or hyperactivated in vitro. J Androl. 1992;13:75-80. https://doi.org/10.1002/j.1939-4640.1992.tb01631.x 
  72. Holt WV, Fazeli A. Sperm storage in the female reproductive tract. Annu Rev Anim Biosci. 2016;4:291-310. https://doi.org/10.1146/annurev-animal-021815-111350 
  73. Song C, Gao B, Wu H, Xie Y, Wang X, Li B, et al. Molecular cloning, spatial and temporal expression analysis of CatSper genes in the Chinese Meishan pigs. Reprod Biol Endocrinol. 2011;9:132. https://doi.org/10.1186/1477-7827-9-132 
  74. Vicente-Carrillo A, Alvarez-Rodriguez M, Rodriguez-Martinez H. The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol. 2017;17:69-78. https://doi.org/10.1016/j.repbio.2017.01.001 
  75. Machado SA, Sharif M, Wang H, Bovin N, Miller DJ. Release of porcine sperm from oviduct cells is stimulated by progesterone and requires CatSper. Sci Rep. 2019;9:19546. https://doi.org/10.1038/s41598-019-55834-z 
  76. Harayama H. Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J Reprod Dev. 2013;59:421-30. https://doi.org/10.1262/jrd.2013-056 
  77. Otsuka N, Harayama H. Characterization of extracellular Ca2+-dependent full-type hyperactivation in ejaculated boar spermatozoa preincubated with a cAMP analog. Mol Reprod Dev. 2017;84:1203-17. https://doi.org/10.1002/mrd.22921 
  78. Loux SC, Crawford KR, Ing NH, Gonzalez-Fernandez L, Macias-Garcia B, Love CC, et al. CatSper and the relationship of hyperactivated motility to intracellular calcium and pH kinetics in equine sperm. Biol Reprod. 2013;89:123. https://doi.org/10.1095/biolreprod.113.111708 
  79. Okamura Y, Nishino A, Murata Y, Nakajo K, Iwasaki H, Ohtsuka Y, et al. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol Genomics. 2005;22:269-82. https://doi.org/10.1152/physiolgenomics.00229.2004 
  80. Seifert R, Flick M, Bonigk W, Alvarez L, Trotschel C, Poetsch A, et al. The CatSper channel controls chemosensation in sea urchin sperm. EMBO J. 2015;34:379-92. https://doi.org/10.15252/embj.201489376 
  81. Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, et al. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol. 2023;11:1136537. https://doi.org/10.3389/fcell.2023.1136537