과제정보
This paper results from research funded by Universitas Islam Sultan Agung-Indonesia (Contract No.322/B.1/SALPPM/IX/2022) in collaboration with Universitas Semarang-Indonesia and fib-Indonesia. The support received for this research is gratefully acknowledged.
참고문헌
- Abubakar, A.U. and Akcaoglu, T. (2021), "Influence of pre-compression on crack propagation in steel fiber reinforced concrete", Adv. Concrete Constr., Int. J., 11(3), 261-270. https://doi.org/10.12989/acc.2021.11.3.261
- ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI-318-19) and Commentary (318R-19), American Concrete Institute, Farmington Hills, MI, USA.
- Al-Tikrite, A. and Hadi, M.N.S. (2018), "Influence of steel fibres on the behaviour of RPC circular columns under different loading conditions", Structures, 14, 111-123. https://doi.org/10.1016/j.istruc.2018.03.002
- Amariansah, W. and Karlinasari, R. (2019), "The influence of steel fiber on the stress-strain behavior of confined concrete", J. Adv. Civil Environ. Eng., 2(1), 46-52. https://doi.org/10.30659/jacee.2.1.46-52
- Antonius (2015), "Strength and energy absorption of high-strength steel fiber concrete confined by circular hoops", Int. J. Technol., 6(2), 217-226. https://doi.org/10.14716/ijtech.v6i2.860
- Antonius, Imran, I. and Setiyawan, P. (2017), "On the confined high-strength concrete and need of future research", Procedia Eng., 171, 121-130. https://doi.org/10.1016/j.proeng.2017.01.318
- Antonius, Purwanto and Harprastanti, P. (2019), "Experimental study of the flexural strength and ductility of post burned steel fiber RC beams", Int. J. Technol., 10(2), 428-437. https://doi.org/10.14716/ijtech.v10i2.2097
- Antonius, Karlinasari, R., Purwanto and Widhianto, A. (2020), "Shear strength and deformation of steel fiber reinforced concrete beams after fire", Adv. Concrete Constr., Int. J., 10(2), 105-111. https://doi.org/ 10.12989/acc.2020.10.2.105
- Aoude, H., Hosinieh, M.M., Cook, W.D. and Mitchell, D. (2014), "Behaviour of rectangular columns constructed with SCC and steel fibers", J. Struct. Eng., 141(8), 04014191. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001165
- ASTM C 39-94 (1996), Test Method for Compressive Strength of Cylindrical Concrete Specimens. Annual Books of ASTM Standards, USA.
- Campione, G. (2002), "The effects of fibers on the confinement models for concrete columns", Can. J. Civil Eng., 29, 742-750. https://doi.org/10.1139/l02-066
- Cholida, N.F.F., Antonius and Enggartiasto, L. (2022), "A comparative study of the confinement models of high-strength steel fiber concrete by statistical approach", J. Civil Eng. Forum, 8(3), 309-320. https://doi.org/10.22146/jcef.4029
- Ezeldin, A.S. and Balaguru. P.N. (1992), "Normal- and high-strength fiber-reinforced concrete under compression", J. Mater. Civil Eng., 4, 415. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
- Garcia-Taengua, E., Marti-Vargas, J.R. and Serna, P. (2014), "Splitting of concrete cover in steel fiber reinforced concrete: semi-empirical modeling and minimum confinement requirements", Constr. Build. Mater., 66, 743-751. https://doi.org/10.1016/j.conbuildmat.2014.06.020
- Gomes, L.D. dos Santos, Oliveira, D.R.C., Neto, B.N. de Moraes, Medeiros, A.B., Macedo, A.N. and Silva, F.A.C. (2018), "Experimental analysis of the efficiency of steel fibers on shear strength of beams", Latin Am. J. Solids Struct., 15, 1-16. https://doi.org/10.1590/1679-78254710
- Ganesan, N. and Murthy, J.V.R. (1990), "Strength and behavior of confined steel fiber reinforced concrete columns", ACl Mater. J., 87(3), 221-227. https://www.concrete.org/publications/acimaterialsjournal.aspx https://doi.org/10.14359/2103
- Han, A.L., Antonius and Okiyarta, A.W. (2015), "Experimental study of steel fiber reinforced concrete beams with confinement", Procedia Eng., 125, 1030-1035. https://doi.org/10.1016/j.proeng.2015.11.158
- Hsu, L.S. and Hsu, C.T. (1994), "Stress-strain behavior of steel-fiber high-strength concrete under compression", ACI Struct. J., 91(4), 448-457. https://doi.org/10.14359/4152
- Indonesian National Standard, SNI 2847-2019, Requirements of Structural Concrete for Buildings (in Indonesian).
- Indonesian National Standard, SNI 7656:2012, Procedures of Mixed Selection for Normal Concrete, Heavy Concrete and Mass Concrete (in Indonesian).
- Jang, S.J. and Yun, H.D. (2018), "Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete", Compos. Struct., 185, 203-211. https://doi.org/10.1016/j.compstruct.2017.11.009
- Junior, L.A.O., do Santos Borges, V.E., Danin, A.R. and Machado, D.V.R. (2010), "Stress-strain curves for steel fiber-reinforced concrete in compression", Revista Materia, 15(2), 260-266. https://doi.org/10.1590/S1517-70762010000200025
- Liao, W.C., Perceka, W. and Liu, E.J. (2015), "Compressive stress-strain relationship of high strength steel fiber reinforced concrete", J. Adv. Concrete Technol., 13, 379-392. https://doi.org/10.3151/jact.13.379
- Lu, X., Zhang, Y. and Zhang, H. (2018), "Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions", Eng. Struct., 171, 247. https://doi.org/10.1016/j.engstruct.2018.05.068
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Constr., Int. J., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367
- Naeimi, N. and Moustafa, M.A. (2021), "Analytical stress-strain model for steel spirals-confined UHPC", Compos. Part C: Open Access, 5, 100130. https://doi.org/10.1016/j.jcomc.2021.100130
- Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel-fiber reinforced concrete under compression", Cement Concrete Compos., 21, 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
- Ou, Y.C., Tsai, M.S., Liu, K.Y. and Chang, K.C. (2012), "Compressive behavior of steel fiber reinforced concrete with a high reinforcing index", J. Mater. Civil Eng., 24, 207-215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
- Pantazopoulou, S.J. and Zanganeh, M. (2001), "Triaxial tests of fiber-reinforced concrete", J. Mater. Civil Eng., 13(5), 340-348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340)
- Paultre, P., Eid, R., Langlois, Y. and Levesque, Y. (2010), "Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression", J. Struct. Eng., 136(10), 1225-1235. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000211
- Purwanto, Antonius and Setiyawan, P. (2021), "Stress-strain behavior of normal and high-strength steel fiber concrete post burning", Int. J. GEOMATE, 21(85), 61-70. https://doi.org/10.21660/2021.85.j2211
- Rabi, M., Cashell, K.A., Shamass, R. and Desnerck, P. (2020), "Bond behaviour of austenitic stainless steel reinforced concrete", Eng. Struct., 221 p. 111027. https://doi.org/10.1016/j.engstruct. 111027
- Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
- Sivakamasundari, S., Daniel, A.J. and Kumar, A. (2017), "Study on flexural behavior of steel fiber RC beams confined with biaxial geo-grid", Procedia Eng., 173, 1431-1438. https://doi.org/10.1016/j.proeng.2016.12.206.
- Usman, M., Farooq, Syed H., Umair, M. and Hanif, A. (2020), "Axial compressive behavior of confined steel fiber reinforced high strength concrete", Constr. Build. Mater., 230, 117043. https://doi.org/10.1016/j.conbuildmat.2019.117043
- Zaidi, K.A., Sharma, U.K., Bhandari, N.M. and Bhargava, P. (2016), "Postheated model of confined high strength fibrous concrete", Adv. Civil Eng., Article ID 5659817. https://doi.org/10.1155/2016/5659817