DOI QR코드

DOI QR Code

Lie group analysis of MHD slip flow past a stretching surface: Effect of suction/injection

  • Waheed Iqbal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mudassar Jalil (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ikram Ahmad (Department of Chemistry, University of Sahiwal) ;
  • Rana Muhammad Akram Muntazir (Department of Mathematics, Lahore Leads University) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Javeria Umbreen (Department of Chemistry, University of Sahiwal) ;
  • Essam Mohammed Banoqitah (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ghulam Murtaza (Department of Mathematics, University of Sahiwal) ;
  • Bazal Fatima (Department of Chemistry, University of Sahiwal) ;
  • Muhammad Taj (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Zafer Iqbal (Department of Mathematics, University of Sargodha)
  • Received : 2023.08.17
  • Accepted : 2024.07.18
  • Published : 2024.04.25

Abstract

Effects of MHD slip flow of second grade fluid with heat transfer are studied in the presence of heat source along permeable stretching surface. The governing boundary layer equations are complex and partial in nature. Using Lie group theory the suitable similarity transformation is derived. The system of PDEs is transformed to system of ODEs by applying these similarity transformations. The combined effect of Hartman number and porosity on velocity profile and the influence of slip parameter on fluid velocity is observed. It is found that enhancing the second grade parameter, boundary layer thickens and ultimately speedup the fluid. Also, the effect of suction/injection parameter on velocity profile is checked. An excellent agreement is noticed that assures the correctness of results. Effects of various physical parameters on the velocity and temperature profile are elaborated with graphs.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/95/45.

References

  1. Abo-zaid, O.A., Mohamed, R.A., Hady, F.M. and Mahdy, A. (2021), "MHD Powell-Eyring dusty nanofluid flow due to stretching surface with heat flux boundary condition", J. Egypt. Mathe. Soc., 29(1), 1-14. https://doi.org/10.1186/s42787-021-00123-w
  2. Agrawal, P., Dadheech, P.K., Jat, R.N., Bohra, M., Nisar, K.S. and Khan, I. (2020), "Lie similarity analysis of MHD flow past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity", J. Mater. Res. Technol., 9(5), 10045-10053. https://doi.org/10.1016/j.jmrt.2020.07.023
  3. Ahmed, S.E. and Rashed, Z.Z. (2021), "Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels", Thermal Sci., 25(6 Part A), 4241-4255. https://doi.org/10.2298/TSCI191014144
  4. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1
  5. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
  6. Ali, G., Ali, F., Khan, A., Ganie, A.H. and Khan, I. (2022), "A generalized magnetohydrodynamic two-phase free convection flow of dusty Casson fluid between parallel plates", Case Stud. Thermal Eng., 29, 101657. https://doi.org/10.1016/j.csite.2021.101657
  7. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  8. Andersson, H.I. (2002), "Slip flow past a stretching surface", Acta Mechanica, 158, 121-125. http://dx.doi.org/10.1007/BF01463174
  9. Asghar, S., Naeem, M.N., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020a), "Effect of chiral structure for free vibration of DWCNTs: Modal analysis", Adv. Concrete Constr., Int. J., 9(6), 577-588. https://doi.org/10.12989/acc.2020.9.6.577
  10. Asghar, S., Khadimallah, M.A., Naeem, M.N., Ghamkhar, M., Khedher, K.M., Hussain, M., Bouzgarrou, S.M., Ali, Z., Iqbal, Z., Mahmoud, S.R. and Algarni, A. (2020b), "Small scale computational vibration of double-walled CNTs: Estimation of nonlocal shell model", Adv. Concrete Constr., Int. J., 10(4), 345-355. https://doi.org/10.12989/acc.2020.10.4.345
  11. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Microorganism Concentration and Bioconvection Peclet Number Effects", Am. J. Mech. Industr. Eng, 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
  12. Bai, B., Chen, J., Zhang, B. and Wang, H. (2024), "Migration trajectories and blocking effect of the fine particles in porous media based on particle flow simulation", AIP Advances, 14(4), 045036. https://doi.org/10.1063/5.0199046
  13. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/ACC.2023.15.2.085
  14. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  15. Crane, L.J. (1970), "Flow past a stretching plate", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 21(4), 645-647. https://doi.org/10.1007/bf01587695
  16. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  17. Devi, C.S., Takhar, H.S. and Nath, G. (1986), "Unsteady, three-dimensional, boundary-layer flow due to a stretching surface", Int. J. Heat Mass Transfer, 29(12), 1996-1999. https://doi.org/10.1016/0017-9310(86)90020-7
  18. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
  19. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269
  20. Hamad, M.A.A., Uddin, M.J. and Ismail, A.M. (2012), "Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions", Int. J. Heat Mass Transfer, 55(4), 1355-1362. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.043
  21. Han, Q. and Chu, F. (2015), "Nonlinear dynamic model for skidding behavior of angular contact ball bearings", J. Sound Vib., 354, 219-235. https://doi.org/10.1016/j.jsv.2015.06.008 
  22. Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013
  23. Hassan, H.S. (2015), "Symmetry analysis for MHD viscous flow and heat transfer over a stretching sheet", Appl. Mathe., 6(01), 78-94. https://doi.org/10.4236/am.2015.61009
  24. Hussain, M. (2024a), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, 978103265622.
  25. Hussain, M. (2024b), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, 9781032656229.
  26. Iqbal, W., Jalil, M., Khadimallah, M.A., Ayed, H., Naeem, M.N., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ghandourah, E., Taj, M. and Tounsi, A. (2020), "Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder", Steel Compos. Struct., Int. J., 36(5), 603-615. https://doi.org/10.12989/scs.2020.36.5.603
  27. Jiang, Z., Shi, H., Tang, X. and Qin, J. (2023), "Recent advances in droplet microfluidics for single-cell analysis", TrAC Trends Analyt. Chem., 159, 116932. https://doi.org/10.1016/j.trac.2023.116932
  28. Khadimallah, M.A., Safeer, M., Taj, M., Ayed, H., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ahmad, M. and Tounsi, A. (2020), "The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model", Adv. Concrete Constr., Int. J., 10(2), 141-149. https://doi.org/10.12989/acc.2020.10.2.141
  29. Kumar, T.S. (2021), "Hybrid nanofluid slip flow and heat transfer over a stretching surface", Partial Different. Eq. Appl. Mathe., 4, 100070. https://doi.org/10.1016/j.padiff.2021.100070
  30. Kumaran, V. and Ramanaiah, G. (1996), "A note on the flow over a stretching sheet", Acta Mechanica, 116(1-4), 229-233. https://doi.org/10.1007/BF01171433
  31. Luo, J., Wang, G., Li, G. and Pesce, G. (2022), "Transport infrastructure connectivity and conflict resolution: a machine learning analysis", Neural Comput. Applicat., 34(9), 6585-6601. https://doi.org/10.1007/s00521-021-06015-5
  32. Majeed, A., Zeeshan, A. and Gorla, R.S.R. (2018), "Convective heat transfer in a dusty ferromagnetic fluid over a stretching surface with prescribed surface temperature/heat flux including heat source/sink", J. Nat. Sci. Found. Sri Lanka, 46(3). https://doi.org/10.4038/jnsfsr.v46i3.8492
  33. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015
  34. Megahed, A.M. and Abdel-Rahman, R.G. (2019), "Lie group analysis of heat flux effect on MHD second slip flow for a slightly rarefied gas past a stretching sheet with heat generation", Tech. Sci./Univ. Warmia Mazury in Olsztyn, 22(1), 45-59. https://doi.org/10.31648/ts.4347
  35. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  36. Metri, P.G., Guariglia, E. and Silvestrov, S. (2017), "Lie group analysis for MHD boundary layer flow and heat transfer over stretching sheet in presence of viscous dissipation and uniform heat source/sink", In: AIP Conference Proceedings, Vol. 1798, No. 1, p. 020096.
  37. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4), p. 041701. https://doi.org/10.1115/1.4023038
  38. Rajeswari, V. and Nath, G. (1992), "Unsteady flow over a stretching surface in a rotating fluid", Int. J. Eng. Sci., 30(6), 747-756. https://doi.org/10.1016/0020-7225(92)90104-O
  39. Saif, R.S., Hayat, T., Ellahi, R., Muhammad, T. and Alsaedi, A. (2018), "Darcy-Forchheimer flow of nanofluid due to a curved stretching surface", Int. J. Numer. Methods Heat Fluid Flow, 29(1), 2-20. https://doi.org/10.1108/HFF-08-2017-0301
  40. Sakiadis, B.C. (1961), "Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow", AIChE Journal, 7(1), 26-28. https://doi.org/10.1002/aic.690070108
  41. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  42. Shah, Z., Kumam, P. and Deebani, W. (2020), "Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation", Scientific Reports, 10(1), 1-14. https://www.nature.com/articles/s41598-020-61125-9 https://doi.org/10.1038/s41598-019-56847-4
  43. Sharif, H., Naeem, M.N., Khadimallah, M.A., Ayed, H., Bouzgarrou, S.M., Al Naim, A.F., Hussain, S., Hussain, M., Iqbal, Z. and Tounsi, A. (2020), "Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism", Adv. Concrete Constr., Int. J., 10(4), 357-367. https://doi.org/10.12989/acc.2020.10.4.357
  44. Shu, X., Li, J. and Shen, M. (2022), "A coupled 2D RBSM-Voronoi model for simulating fracture behaviors of plain concrete components", Adv. Concrete Constr., Int. J., 14(6), 391-400. https://doi.org/10.12989/acc.2022.14.6.391
  45. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R. S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
  46. Su, F.Q., He, X.L., Dai, M.J., Yang, J.N., Hamanaka, A., Yu, Y.H., Li, W. and Li, J.Y. (2023), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309
  47. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids, 35(3), 32002. https://doi.org/10.1063/5.0138294
  48. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X231222999
  49. Vajravelu, K. and Hadjinicolaou, A. (1993), "Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation", Int. Commun. Heat Mass Transfer, 20(3), 417-430. https://doi.org/10.1016/0735-1933(93)90026-R
  50. Wang, C.Y. (1984), "The three-dimensional flow due to a stretching flat surface", Phys. Fluids, 27(8), 1915-1917. http://dx.doi.org/10.1063/1.864868
  51. Wang, Z., Wang, S., Wang, X. and Luo, X. (2023a), "Permanent Magnet-Based Superficial Flow Velometer With Ultralow Output Drift", IEEE Transact. Instrument. Measur., 72, 1-12. https://doi.org/10.1109/TIM.2023.3304692
  52. Wang, Q., Li, P., Rocca, P., Li, R., Tan, G., Hu, N. and Xu, W. (2023b), "Interval-based tolerance analysis method for petal reflector antenna with random surface and deployment errors", IEEE Transact. Antennas Propag., 71(11), 8556-8569. https://doi.org/10.1109/TAP.2023.3314097
  53. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023c), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp, 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
  54. Wang, Z., Wang, S., Wang, X. and Luo, X. (2024a), "Underwater moving object detection using superficial electromagnetic flow velometer array based artificial lateral line system", IEEE Sensors J., 24(8), 12104-12121. https://doi.org/10.1109/JSEN.2024.3370259
  55. Wang, Z., Zhao, Q., Yang, Z., Liang, R. and Li, Z. (2024b), "High-speed photography and particle image velocimetry of cavitation in a Venturi tube", Phys. Fluids, 36(4), 045147. https://doi.org/10.1063/5.0203411
  56. Wu, H., Bai, B. and Liu, J. (2024), "Temperature-driven coupled transport of pollutants and suspended particles established by granular thermodynamics", Int. J. Heat Mass Transfer, 228, 125645. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125645
  57. Zhang, Y., Cheng, M., Liu, X., Rong, G., Sheng, Z., Shen, D., Wu, K. and Wang, J. (2024), "The influence of plug nozzle and Laval nozzle on the flow field and performance of non-premixed rotating detonation combustor", Phys. Fluids, 36(5), 056107. https://doi.org/10.1063/5.0207508