DOI QR코드

DOI QR Code

Impact of incidence angle of seismic excitation on vertically irregular structures

  • Md. Ghousul Ansari (Department of Civil Engineering, Indian Institute of Technology (ISM) Dhanbad) ;
  • Sekhar C. Dutta (Department of Civil Engineering, Indian Institute of Technology (ISM) Dhanbad) ;
  • Aakash S. Dwivedi (Department of Civil Engineering, Indian Institute of Technology Bombay) ;
  • Ishan Jha (Department of Civil Engineering, Indian Institute of Technology (ISM) Dhanbad)
  • Received : 2023.12.09
  • Accepted : 2024.06.20
  • Published : 2024.09.25

Abstract

The incidence angle of seismic excitation relative to the two orthogonal major axes of structures has been a subject of considerable research interest. Previous studies have primarily focused on single-storey symmetric and asymmetric structures, suggesting a minimal effect of incidence angle on structural behavior. This research extends the investigation to multi-storey structures, including vertically irregular configurations, using a comprehensive set of 20 near fault and 20 far field seismic excitation. The study employs nonlinear time-history analysis with a bidirectional hysteresis model to capture inelastic deformations accurately. Various structural models, including one-storey and two- storey regular structures (R1, R2) and vertically irregular structures with setbacks in one direction (IR1) and both directions (IR2), are analysed. The analysis reveals that the incidence angle has no discernible impact over the response of regular multi-storey structures. However, vertically irregular structures exhibit notable responses at corner columns, which decrease towards central columns, irrespective of the incidence angle. This response is attributed to the inherent mass distribution and stiffness irregularities rather than the angle of seismic excitation. The findings indicate that for both near fault and far field seismic excitation, the incidence angle's impact remains marginal even for complex structural configurations. Consequently, the study suggests that the angle of incidence of seismic excitation need not be a primary consideration in the seismic design of both regular and vertically irregular structures. These conclusions are robust across various structural models and seismic excitation characteristics, providing a comprehensive understanding the impact of incidence angle on seismic response.

Keywords

References

  1. Atefatdoost, G.R., Shakib H. and JavidSharifi, B. (2017), "Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility", Struct. Eng. Mech., 63(3), 281-292. https://doi.org/10.12989/sem.2017.63.3.281.
  2. Attarchian, N., Kalantari A. and Moghadam S.A. (2018), "Developing a new procedure for evaluating the ductility capacity of rectangular RC piers subjected to biaxial flexural loadings", Eng. Struct., 172, 187-200. https://doi.org/10.1016/j.engstruct.2018.05.108.
  3. Cheng, Y.F. and Ger, J.F. (1990), "The effect of multicomponent seismic excitation and direction on response behavior of 3-D structures", Proceedings of the 4th US National Conference on Earthquake Engineering, Palm Springs, CA, USA, May.
  4. Chopra, A.K. and Goel, R.K. (1991), "Evaluation of torsional provisions in seismic codes", J. Struct. Eng., 117(12), 3762-3782. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:12(3762),
  5. Clough, R.W. (1962), "Earthquake analysis by response spectrum superposition", Bull. Seismol. Soc. Am., 52, 647-660. https://doi.org/10.1785/BSSA0520030647.
  6. Dang-Vu, H., Lee, D.H., Shin J. and Lee K. (2020), "Influence of shear-axial force interaction on the seismic performance of a piloti building subjected to the 2017 earthquake in Pohang Korea", Struct. Concrete, 21, 220-234. https://doi.org/10.1002/suco.201800291.
  7. Dutta, S.C. and Kunnath, S.K. (2013), "Effect of bidirectional interaction on seismic demand of structures", Soil Dyn. Earthq. Eng., 52, 27-39. https://doi.org/10.1016/j.soildyn.2013.04.008.
  8. Eivani, H. and Moghadam, A.S. (2021), "Seismic response of torsional structures considering the possibility of diaphragm flexibility", Struct. Eng. Mech., 77(4), 463-472. https://doi.org/10.12989/sem.2021.77.4.463.
  9. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Rehabilitation Requirements 1-518, Federal Emergency Management Agency, Washington, D.C., USA.
  10. Fontara, I.K.M., Kostinakis, K.G., Manoukas, G.E. and Athanatopoulou, A.M. (2015), "Parameters affecting the seismic response of buildings under bi-directional excitation", Struct. Eng. Mech., 53(5), 957-979. https://doi.org/10.12989/sem.2015.53.5.957.
  11. Fung, Y.C., Barton, M.V. and Young D. (1962), "Response of nonlinear system to shock excitation", SAE Technical Papers No. 620317; SAE International, Warrendale, PA, USA.
  12. Housner, G.W. (1959), "Behavior of structures during earthquakes", J. Eng. Mech. Div., 85, 109-129. https://doi.org/10.1061/JMCEA3.0000102.
  13. Hussain, M.A., Dutta, S.C. and Das, S. (2022), "Seismic behaviour of structures under bidirectional ground motion: Does the angle of incidence have any influence?", Soil Dyn. Earthq. Eng., 159, 107328. https://doi.org/10.1016/j.soildyn.2022.107328.
  14. Hussain, M.A., Dutta, S.C., Das, S. and Mandal, P. (2023), "Influence of post-elastic range bidirectional interaction for various angles of incidence of ground motions on one-story asymmetric structures", J. Earthq. Eng., 27(16), 4527-4548. https://doi.org/10.1080/13632469.2023.2183047.
  15. Kalkan, E. and Kwong, N.S. (2014), "Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings", J. Struct. Eng., 140, 1-14. https://doi.org/10.1061/(asce)st.1943-541x.0000845.
  16. Kalkan, E. and Reyes, J.C. (2015), "Significance of rotating ground motions on behavior of symmetric- and asymmetric-plan structures: Part II Multi-story structures", Earthq. Spectra, 31, 1613-1628. https://doi.org/10.1193/072012EQS242M.
  17. Kakavand, M.R. and Allahvirdizadeh, R. (2019), "Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes", Front. Struct. Civil Eng., 13, 1251-1270. https://doi.org/10.1007/s11709-019-0554-2.
  18. Khoshnoudian, F. and Poursha, M. (2004), "Responses of three dimensional buildings under bi-directional and unidirectional seismic excitations", 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August.
  19. Lagaros, N.D. (2010a), "The impact of the earthquake incident angle on the seismic loss estimation", Eng. Struct., 32, 1577-1589. https://doi.org/10.1016/j.engstruct.2010.02.006.
  20. Lagaros, N.D. (2010b), "Multicomponent incremental dynamic analysis considering variable incident angle", Struct. Infrastr. Eng., 6, 77-94. https://doi.org/10.1080/15732470802663805.
  21. Lee, C.S. and Han, S.W. (2019), "Cyclic behaviour of lightly-reinforced concrete columns with short lap splices subjected to unidirectional and bidirectional loadings", Eng. Struct., 189, 373-384. https://doi.org/10.1016/J.ENGSTRUCT.2019.03.108.
  22. Micozzi, F., Scozzese, F., Ragni, L. and Dall'Asta, A. (2022), "Seismic reliability of base isolated systems: Sensitivity to design choices", Eng. Struct., 256, 114056. https://doi.org/10.1016/J.ENGSTRUCT.2022.114056.
  23. Naderpour, H. and Mirrashid, M. (2020), "Proposed soft computing models for moment capacity prediction of reinforced concrete columns", Soft Comput., 24, 11715-11729. https://doi.org/10.1007/s00500-019-04634-8.
  24. Nguyen, V.T. and Kim, D. (2013), "Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures", Struct. Eng. Mech., 45(3), 373-389. https://doi.org/10.12989/sem.2013.45.3.373.
  25. Ning, C.L., Wang, S. and Cheng, Y. (2022), "An explicit solution for the effect of earthquake incidence angles on seismic ductility demand of structures using Bouc-Wen model", Soil Dyn. Earthq. Eng., 153, 107085. https://doi.org/10.1016/j.soildyn.2021.107085.
  26. Pinzon, L.A., Diaz, S.A., Pujades, L.G. and Vargas, Y.F. (2019), "An efficient method for considering the directionality effect of earthquakes on structures", J. Earthq. Eng., 25(9), 1679-1708. https://doi.org/10.1080/13632469.2019.1597783.
  27. Reyes, J.C. and Kalkan, E. (2015), "Significance of rotating ground motions on behavior of symmetric- and asymmetric-plan structures: Part I Single-story structures", Earthq. Spectra, 31, 1591-1612. https://doi.org/10.1193/072012EQS241M.
  28. Reyes-salazar, A., Lopez-barraza, A., Lopez, A. and Haldar, A. (2008), "Multi-component seismic response analysis - A critical review", J. Earthq. Eng., 12, 779-799. https://doi.org/10.1080/13632460701672979.
  29. Rigato, A.B. and Medina, R.A. (2007), "Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions", Eng. Struct., 29, 2593-2601. https://doi.org/10.1016/j.engstruct.2007.01.008.
  30. Rodrigues, H. and Silva, P. (2014), "Behaviour of RC columns under variable load and bidirectional horizontal loading", Proceedings of the Second European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, August.
  31. Rosenblueth, E. (1964), "Probabilistic design to resist earthquakes", J. Eng. Mech. Div., 90, 189-220. https://doi.org/10.1061/JMCEA3.0000536.
  32. Skoulidou, D. and Romao, X. (2020), "The significance of considering multiple angles of seismic incidence for estimating engineering demand parameters", Bull. Earthq. Eng., 18, 139-163. https://doi.org/10.1007/s10518-019-00724-y.
  33. Skoulidou, D. and Romao, X. (2020), "The significance of considering multiple angles of seismic incidence for estimating engineering demand parameters", Bull. Earthq. Eng., 18, 139-163. https://doi.org/10.1007/S10518-019-00724-Y/FIGURES/21.
  34. Skoulidou, D. and Romao, X. (2021), "Are seismic losses affected by the angle of seismic incidence?", Bull. Earthq. Eng., 19(15), 6271-6302. https://doi.org/10.1007/s10518-021-01121-0.
  35. Tian., L., Haiyang. P., Ruisheng. M. and Xu. D. (2019), "Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system", Struct. Eng. Mech., 71(3), 305-315. https://doi.org/10.12989/sem.2019.71.3.305.
  36. Vargas-alzate, Y.F. and Pujades, L.G. (2021), "A simplified approach for including the incidence angle effect in seismic risk assessment", Earthq. Eng. Struct. Dyn., 51(1), 191-212. https://doi.org/10.1002/eqe.3562.
  37. Veletsos, A.S. and Newmark, N.M. (1960), "Effect of inelastic behavior on the response of simple systems to earthquake motions", Department of Civil Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.
  38. Xiang, T. and Zhao, R. (2005), "Dynamic interaction analysis of vehicle-bridge system using transfer matrix method", Struct. Eng. Mech., 20(1), 111-121. https://doi.org/10.12989/sem.2005.20.1.111.
  39. Yazdanpanah., O., Chang., M., Park., M. and Chae, Y. (2023), "Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests", Struct. Eng. Mech., 85(4), 469-484. https://doi.org/10.12989/sem.2023.85.4.469.
  40. Young, D., Barton, M.V. and Fung, Y.C. (1963), "Shock spectra for nonlinear spring-mass systems and their applications to design", AIAA J., 1(7), 1597-602. https://doi.org/10.2514/3.1863.