DOI QR코드

DOI QR Code

Correlation between seismic damage index and structural performance for Indian code-conforming RC frame buildings

  • Tushar K. Das (Department of Civil Engineering, National Institute of Technology Silchar) ;
  • Pallab Das (Department of Civil Engineering, National Institute of Technology Silchar) ;
  • Satyabrata Choudhury (Department of Civil Engineering, National Institute of Technology Silchar)
  • 투고 : 2023.12.09
  • 심사 : 2024.06.20
  • 발행 : 2024.09.25

초록

The susceptibility of Reinforced Concrete (RC) buildings to earthquake-induced damage is a critical concern, primarily attributed to their inadequate seismic performance. The existing earthquake-resistant design code of India prescribes guidelines to minimize seismic damage but does not provide any means for evaluating the actual seismic performance and damage. To ascertain the seismic performance of the structures quantitatively, it is crucial to classify damage into measurable damage states. Damage Index (DI) acts as an important tool for this purpose. Among various procedures for computation of DI, the modified Park and Ang Damage Index appears to be highly accurate. However, the major drawback of this method is that it is lengthy and time-consuming. On the other hand, structural performances can be evaluated using various performance parameters such as interstory drift ratio (IDR), inelastic deformation, etc., as described in FEMA-356 and ASCE-41 17. The present study explores the correlation between seismic DI and structural performance in RC frame buildings designed according to IS code. Sixteen building models, incorporating diverse configurations, are examined using nonlinear static and time history analyses. A simplified equation is developed by regression analysis to predict DI based on IDR, offering a computationally efficient alternative. Validation tests are done to confirm the equation's accuracy. Furthermore, a unified damage scale integrating DI and seismic performance is also proposed for seismic damage evaluation of buildings designed by IS code.

키워드

과제정보

The first author (Tushar K. Das) highly acknowledges the Ph.D. Fellowship received from Ministry of Education, Government of India.

참고문헌

  1. Amiri, G.G. and Rajabi, E. (2018), "Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes", Earthq. Struct., 14(2), 129-142. https://doi.org/10.12989/eas.2018.14.2.129.
  2. Arjomandi, K., Estekanchi, H. and Vafai, A. (2009), "Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes", Sci. Iran. Trans. A: Civil Eng., 16(2), 147-155.
  3. ASCE/SEI 41 (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Virginia, USA.
  4. ASCE 7 (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  5. Baba, F.Z. and Davenne, L. (2020), "Effect of the viscous damping on the seismic response of low-rise RC frame building", Rev. Fac. Ing. Univ. Antioq., 96, 32-43. https://doi.org/10.17533/udea.redin.20191045.
  6. Banon, H., Biggs, J.M. and Irvine, H.M. (1981), "Seismic damage in reinforced concrete frames", J. Struct. Div., 107(9), 1713-1729. https://doi.org/10.1061/JSDEAG.000577.
  7. Banon, H. and Veneziano, D. (1982), "Seismic safety of reinforced concrete members and structures", Earthq. Eng. Struct. Dyn., 10(2), 179-193. https://doi.org/doi.org/10.1002/eqe.4290100202.
  8. Bassam, A., Iranmanesh, A. and Ansari, F. (2011), "A simple quantitative approach for post earthquake damage assessment of flexure dominant reinforced concrete bridges", Eng. Struct., 33(12), 3320-3344. https://doi.org/10.1016/j.engstruct.2011.06.024.
  9. Bozorgnia, Y. and Bertero, V.V. (2001), "Evaluation of damage potential of recorded earthquake ground motion", Seismol. Res. Lett., 72(233), 1.
  10. Bracci, J.M., Reinhorn, A.M., Mander, J.B. and Kunnath, S.K. (1989), "Deterministic model for seismic damage evaluation of reinforced concrete structures", Research Report No. NCEER89-0033; Department of Civil Engineering, State University of New York, Buffalo, NY, USA.
  11. Cao, V.V., Ronagh, H.R., Ashraf, M. and Baji, H. (2014), "A new damage index for reinforced concrete structures", Earthq. Struct., 6(6), 581-609. https://doi.org/10.12989/eas.2014.6.6.581.
  12. Cao, V.V. and Ronagh, H.R. (2014), "Correlation between parameters of pulse-type motions and damage of low-rise RC frames", Earthq, Struct,, 7(3), 365-384. https://doi.org/10.12989/eas.2014.7.3.365.
  13. Chebihi, A., Dorbani, S. and Laouami, N. (2023), "Correlation between ground motion parameters and structural response of reinforced concrete buildings", Arab. J. Sci. Eng., 49(4), 4905-4927. https://doi.org/10.1007/s13369-023-08274-x.
  14. Colombo, A. and Negro, P. (2005), "A damage index of generalised applicability", Eng. Struct., 27(8), 1164-1174. https://doi.org/10.1016/j.engstruct.2005.02.014.
  15. CSI (2009), SAP2000 v21 - Integrated Software for Structural Analysis and Design, Computers and Structures Inc., Berkeley, CA, USA.
  16. Di Pasquale, E., Ju, J.W., Askar, A. and Chamak, A.C. (1990), "Relation between global damage indices and local stiffness degradation", J. Struct. Eng., 116(5), 1440-1456. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1440).
  17. Ditao, N. and Lijie, R. (1996), "A modified seismic damage model with double variables for reinforced concrete structures", Earthq. Eng. Eng. Vib., 16(4), 44-54. https://doi.org/10.13197/j.eeev.1996.04.006.
  18. El-Kholy, S.A., El-Assaly, M.S. and Maher, M. (2012), "Seismic vulnerability assessment of existing multi-story reinforced concrete buildings in Egypt", Arab. J. Sci. Eng., 37(2), 341-355. https://doi.org/10.1007/s13369-012-0170-0.
  19. Elenas, A. and Meskouris, K. (2001), "Correlation study between seismic acceleration parameters and damage indices of structures", Eng. Struct., 23(6), 698-704. https://doi.org/10.1016/S0141-0296(00)00074-2.
  20. Estekanchi, H. and Arjomandi, K. (2007), "Comparison of damage indexes in nonlinear time history analysis of steel moment frames", Asian J. Civil Eng. Build. Hous., 8(6), 629-646.
  21. FEMA-356 (2000), Prestandard and Commentary for Seismic Rehabilitation of Buildings, US Federal Emergency Management Agency, US Fedral Emergency Management Agency, Washington, D.C., USA.
  22. Ghobarah, A., Abou-Elfath, H. and Biddah, A. (1999), "Response-based damage assessment of structures", Earthq. Eng. Struct. Dyn., 28(1), 79-104. https://doi.org/https://doi.org/10.1002/(SICI)1096-9845(199901)28:1%3C79::AID-EQE805%3E3.0.CO,2-J.
  23. Ghosh, S., Datta, D. and Katakdhond, A.K. (2011), "Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems", Eng. Struct., 33(9), 2509-2524. https://doi.org/10.1002/eqe.45.
  24. Gosain, N.K., Brown, R.H. and Jirsa, J.O. (1977), "Shear requirements for load reversals on RC members", J. Struct. Div., 103(7), 1461-1476. https://doi.org/10.1061/JSDEAG.0004677.
  25. Guan, M., Du, H., Cui, J., Wenxian, F. and Jiang, H. (2016), "Correlation of a new index with energy-based damage indices", Proc. Inst. Civil Eng. Struct. Build., 170(1), 51-66. https://doi.org/10.1680/jstbu.14.00104.
  26. Guechari, L., Seghir, A., Kada, O. and Becheur, A. (2023), "Seismic damage assessment of a large concrete gravity dam", Earthq. Struct., 25(2), 125-134. https://doi.org/10.12989/eas.2023.25.2.125.
  27. Habibi, A. and Asadi, K. (2016), "Development of drift-based damage index for reinforced concrete moment resisting frames with setback", Int. J. Civil Eng. Trans. A: Civil Eng., 15(4), 487-498. https://doi.org/10.1007/s40999-016-0085-3.
  28. Hait, P., Sil, A. and Choudhury, S. (2018), "Quantification of damage to RC structures, a comprehensive review", Disaster Adv., 11(12), 41-59.
  29. Hait, P., Sil, A. and Choudhury, S. (2020a), "Damage assessment of reinforced concrete-framed building considering multiple demand parameters in indian codal provisions", Iran. J. Sci. Technol. Trans. Civil Eng., 44(1), 121-139. https://doi.org/10.1007/s40996-020-00380-2.
  30. Hait, P., Sil, A. and Choudhury, S. (2020b), "Seismic damage assessment and prediction using artificial neural network of RC building considering irregularities", J. Struct. Integr. Mainten., 5(1), 51-69. https://doi.org/10.1080/24705314.2019.1692167.
  31. Hait, P., Sil, A. and Choudhury, S. (2021), "Prediction of global damage index of reinforced concrete building using artificial neural network", Int. J. Comput. Method. Eng. Sci. Mech., 22(5), 386-399. https://doi.org/10.1080/15502287.2021.1887405.
  32. IS 13920 (2016), Ductile Design and Detailing of Reinforced Concrete Structures Subjected to Seismic Forces-Code of Practice, Bureau of Indian Standard, New Delhi, India.
  33. IS 1893 (Part 1) (2016), Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standard, New Delhi, India.
  34. IS 456 (2000), Indian Standard- Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standard, New Delhi, India.
  35. IS 875 (Part 1) (1987), Indian Standard- Code of Practice for Design Loads (Other than Earthquakes) for Buildings and Structures. Part 1- Dead Loads, Bureau of Indian Standard, New Delhi, India.
  36. IS 875 (Part 2) (1987), Indian Standard- Code of Practice for Design Loads (Other than Earthquakes) for Buildings and Structures. Part 2- Imposed Loads, Bureau of Indian Standard, New Delhi, India.
  37. Jeong, G.D. and Iwan, W.D. (1988), "The effect of earthquake duration on the damage of structures", Earthq. Eng. Struct. Dyn., 16(8), 1201-1211. https://doi.org/10.1002/eqe.4290160808.
  38. Jiang, H.J., Chen, L.Z. and Chen, Q. (2011), "Seismic damage assessment and performance levels of reinforced concrete members", Procedia Eng., 14, 939-945. https://doi.org/10.1016/j.proeng.2011.07.118.
  39. Kappos, A.J. (1997), "Seismic damage indices for RC buildings: Evaluation of concepts and procedures", Prog. Struct. Eng. Mater., 1(1), 78-87. https://doi.org/10.1002/pse.2260010113.
  40. Kassem, M.M., Nazri, F.M. and Farsangi, E.N. (2019), "Development of seismic vulnerability index methodology for reinforced concrete buildings based on nonlinear parametric analyses", Methods, 6, 199-211. https://doi.org/10.1016/j.mex.2019.01.006.
  41. Kassem, M.M., Nazri, F.M. and Farsangi, E.N. (2020), "The efficiency of an improved seismic vulnerability index under strong ground motions", Struct., 23, 366-382. https://doi.org/10.1016/j.istruc.2019.10.016.
  42. Kassem, M.M., Nazri, F.M., Farsangi, E.N. and Ozturk, B. (2022a), "Improved vulnerability index methodology to quantify seismic risk and loss assessment in reinforced concrete buildings", J. Earthq. Eng., 26(12), 6172-6207. https://doi.org/10.1080/13632469.2021.1911888.
  43. Kassem, M.M., Nazri, F.M., Farsangi, E.N. and Ozturk, B. (2022b), "Development of a uniform seismic vulnerability index framework for reinforced concrete building typology", J. Build. Eng., 47, 103838. https://doi.org/10.1016/j.jobe.2021.103838.
  44. Kassem, M.M., Nazri, F.M., Farsangi, E.N. and Tan, C.G. (2021), "Comparative seismic RISK assessment of existing RC buildings using seismic vulnerability index approach", Struct., 32, 889-913. https://doi.org/10.1016/j.istruc.2021.03.032.
  45. Kenari, M.S. and Celikag, M. (2019), "Correlation of ground motion intensity measures and seismic damage indices of masonry-infilled steel frames", Arab. J. Sci. Eng., 44(5), 5131-5150. https://doi.org/10.1007/s13369-019-03719-8.
  46. Khose, V.N., Singh, Y. and Lang Dominik. (2012), "Comparative seismic performance of RC frame buildings designed for ASCE7 and IS 1893", ISET Golden Jublee Symposium, Roorkee, India, October.
  47. Kim, T.H., Lee, K.M., Chung, Y.S. and Shin, H.M. (2005), "Seismic damage assessment of reinforced concrete bridge columns", Eng. Struct., 27(4), 576-592. https://doi.org/10.1016/j.engstruct.2004.11.016.
  48. Kunnath, S.K., Reinhorn, A.M. and Abel, J.F. (1991), "A computational tool for evaluation of seismic performance of reinforced concrete buildings", Comput. Struct., 41(1), 157-173. https://doi.org/10.1016/0045-7949(91)90165-I.
  49. Kunnath, S.K., Reinhorn, A.M. and Lobo, R.F. (1992), "IDARC version 3.0: A program for the inelastic damage analysis of reinforced concrete structures", Research Report No. NCEER92-0022; Department of Civil Engineering, State University of New York, Albany, NY, USA and Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL, USA.
  50. Lakhade, S.O., Kumar, R. and Jaiswal, O.R. (2020), "Estimation of drift limits for diff erent seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index", Earthq. Eng. Eng. Vib., 19(1), 161-177. https://doi.org/10.1007/s11803-020-0554-1.
  51. Lybas, J.M. and Sozen, M.A. (1977), "Effect of beam strength and stiffness on dynamic behavior of reinforced concrete coupled walls, volume 1: Text", Research Report No. SRS 444; University of Illinois, Urbana, IL, USA.
  52. Makhloof, D.A., Ibhrahim, A.R. and Ren, X. (2021), "Damage assessment of reinforced concrete structures through damage indices: A state-of-the-art review", Comput. Model. Eng. Sci., 128(3), 849-874. https://doi.org/10.32604/cmes.2021.016882.
  53. Massumi, A. and Selkisari, M.R. (2023), "Estimation of the seismic damage potential of RC frames using seismic parameters", Int. J. Civil Eng. Trans. A: Civil Eng., 21(3), 461-477. https://doi.org/10.1007/s40999-022-00776-3.
  54. Maulana, T.I. (2022), "Seismic performance assessment and improvement of reinforced concrete buildings with vertical irregularity", Ph.D. Thesis, Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi, Japan.
  55. Maulana, T.I., Enkhtengis, B. and Saito, T. (2021), "Proposal of damage index ratio for low- to mid-rise reinforced concrete moment- resisting frame with setback subjected to uniaxial seismic loading", Appl. Sci., 11(15), 1-16. https://doi.org/10.3390/app11156754.
  56. Mibang, D. and Choudhury, S. (2021), "Damage index evaluation of frame‑shear wall building considering multiple demand parameters", J. Build. Pathol. Rehabilit., 6(40), 1-12. https://doi.org/10.1007/s41024-021-00134-1.
  57. Mibang, D. and Choudhury, S. (2022), "Prediction evaluation of global damage index of RC dual system buildings by support vector regression method", Innov. Infrastr. Solut., 7(2), 169. https://doi.org/10.1007/s41062-022-00772-5.
  58. Newmark, N.M. and Rosenblueth, E. (1971), Fundamentals of Earthquake Engineering, Civil Engineering and Engineering Mechanics Series, Prentice Hall, Englewood Cliffs, NJ, USA.
  59. Origin Lab (2022), Origin (Pro) Version 2022, OriginLab Corporation, Northampton, MA, USA. https://www.originlab.com/origin
  60. Park, R. (1986), "Ductile design approach for reinforced concrete frames", Earthq. Spectra, 2(3), 565-619. https://doi.org/10.1193/1.1585398.
  61. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced conrete", J. Struct. Eng., 111(4), 705-948. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  62. Park, Y.J., Ang, A.H.S. and Wen, Y.K. (1985), "Seismic damage analysis of reinforced concrete buildings", J. Struct. Eng., 111(4), 705-948. https://doi.org//10.1061/(ASCE)0733-9445(1985)111:4(740).
  63. Powell, G.H. and Allahabadi, R. (1988), "Seismic damage prediction by deterministic methods: Concepts and procedures", Earthq. Eng. Struct. Dyn., 16(5), 719-734. https://doi.org/10.1002/eqe.4290160507.
  64. Rodriguez, M.E. and Padilla, D. (2009), "A damage index for the seismic analysis of reinforced concrete members", J. Earthq. Eng., 13(3), 364-383. https://doi.org/10.1080/13632460802597893.
  65. Roufaiel, M.S. and Meyer, C. (1987), "Analytical modeling of hysteretic behavior of R/C frames", J. Struct. Eng., 113(3), 429-444. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429).
  66. Roy, T. and Agarwal, P. (2014), "Comparison of damage index and fragility curve of RC structure using different indian standard codes", Advances in Structural Engineering: Materials, Volume Three, Springer India, Connaught Place, Delhi, India.
  67. Seismosoft (2016), SeismoMatch - A Computer Program for Spectrum Matching of Earthquake Records, Seismosoft. www.seismosoft.com
  68. Sinha, R. and Shriadhonkar, S.R. (2012), "Seismic damage index for classification of structural damage - Closing the loop", 15th World Conference on Earthquake Engineering, Lisboa, Portugal, September.
  69. Stephens, J.E. and Yao, J.T.P. (1987), "Damage assessment using response measurements", J. Struct. Eng., 113(4), 787-801. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(787).
  70. Tyrtaiou, M. and Elenas, A. (2019), "Novel Hilbert spectrum-based seismic intensity parameters interrelated with structural damage", Earthq. Struct., 16(2), 197-208. https://doi.org/10.12989/eas.2019.16.2.197.
  71. Wang, M. and Shah, S.P. (1987), "Reinforced concrete hysteresis model based on the damage concept", Earthq. Eng. Struct. Dyn., 15, 993-1003. https://doi.org/10.1002/EQE.4290150806.
  72. Williams, M.S. and Sexsmith, R.G. (1995), "Seismic damage indices for concrete structures: A state-of-the-art review", Earthq. Spectra, 11(2), 319-349. https://doi.org/10.1193/1.1585817.
  73. Williams, M.S., Villemure, I. and Sexsmith, R.G. (1997), "Evaluation of seismic damage indices for concrete elements loaded in combined shear and flexure", ACI Struct. J., 94(4), 315-323. https://doi.org/10.14359/483.
  74. Yazdannejad, K. and Yazdani, A. (2018), "Bayesian updating of the park-ang damage index for RC frame buildings under near-fault ground motions", Sci. Iran., 25(2), 606-616. https://doi.org/10.24200/sci.2017.4188.
  75. Zameeruddin, M.Z.M. and Sangle, K.K. (2016), "Seismic damage assessment of reinforced concrete structure using non-linear analyses", KSCE J. Civil Eng., 21(4), 1319-1330. https://doi.org/10.1007/s12205-016-0541-2.