DOI QR코드

DOI QR Code

The effect of rectangular and T-shaped stiffeners on the seismic performance of CFDT columns

  • Mojtaba Labibzadeh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Keyvan Parsa (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Farhad Hosseinlou (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Majid Khayat (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz)
  • 투고 : 2024.04.12
  • 심사 : 2024.06.19
  • 발행 : 2024.09.25

초록

Due to the many advantages of concrete-filled double steel tube (CFDT) columns, they are highly recommended for use in heavy-load structures such as bridges, subway stations, and high-rise buildings. This study was carried out with the aim of numerically investigating and comparing the performance of CFDT columns under cyclic and seismic loads and providing innovative strengthening methods for CFDT columns. Hollow circular steel sections have been used for internal and external tubes. To make the circular CFDT columns stronger against seismic loads, stiffeners with different shapes (rectangular and T-shaped sheets) have been welded to the outside and inside tubes. The validated finite element (FE) model of the ABAQUS program is used to look into the behavior of CFDT columns numerically. Two frames of 10 and 20 floors with strengthened CFDT columns were modeled. The results showed that the use of stiffeners in the CFDT column has a significant effect on seismic performance, so that the maximum lateral load of the column is increased up to 32.74% under the effect of cyclic load. Also, the results revealed that the use of stiffeners in the columns of moderate and high-rise building frames causes a significant increase in the shear of the base and consequently the stiffness. Among the other important results that followed, it reduced the drift of floors and increased energy absorption.

키워드

참고문헌

  1. ACI 318-19 (2019), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  2. Asadollahi, S., Labibzadeh, M., Hosseinlou, F. and Khajehdezfuly, A. (2023), "Analytical formula for load-carrying capacity of eccentrically loaded CFDT columns and performance comparison with CFST columns under seismic loads", Iran. J. Sci. Technol. Trans. Civil Eng., 47, 3033-3054. https://doi.org/10.1007/s40996-023-01114-w.
  3. Ding, F., Wu, X., Xiang, P. and Yu, Z. (2021), "New damage ratio strength criterion for concrete and lightweight aggregate concrete", ACI Struct. J., 118(6) 165-178. https://doi.org/10.14359/51732989.
  4. Elchalakani, M., Patel, V.I., Karrech, A., Hassanein, M.F., Fawzia, S. and Yang, B. (2019), "Finite element simulation of circular short CFDST columns under axial compression", Struct., 20, 607-619. https://doi.org/10.1016/j.istruc.2019.06.004.
  5. Ghodratian-Kashan, S.M. and Maleki, S. (2022), "Experimental investigation of double corrugated steel plate shear walls", J. Constr. Steel Res., 190, 107138. https://doi.org/10.1016/j.jcsr.2022.107138.
  6. Han, L.H., Xu, C.Y. and Tao, Z. (2019), "Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research", J. Constr. Steel Res., 152, 117-131. https://doi.org/10.1016/j.jcsr.2018.02.038.
  7. Hu, H.T. and Su, F.C. (2011), "Nonlinear analysis of short concrete-filled double -skin tube columns subjected to axial compressive forces", Marine Struct., 24(5), 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001.
  8. Labibzadeh, M. and Khayat, M. (2015), "Heterogeneous and anisotropic long-term concrete damage of the dez arch dam using thermal inverse analysis", Inverse Probl. Sci. Eng., 24(9), 1495-1509. https://doi.org/10.1080/17415977.2015.1124874.
  9. Labibzadeh, M. and Khayat, M. (2023), "Damage assessment of stiffened steel plate shear walls with different configurations under far-fault and near-fault ground motions", J. Constr. Steel Res., 200, 107685. https://doi.org/10.1016/j.jcsr.2022.107685.
  10. Li, W., Chen, B., Han, L. and Lam, D. (2020), "Experimental study on the performance of steel-concrete interfaces in circular concrete-filled double skin steel tube", Thin Wall. Struct., 149, 106660. https://doi.org/10.1016/j.tws.2020.106660.
  11. Li, X., Zhang, S., Lu, W. and Li, J. (2022), "Axial compressive behavior of steel-tube-confined concrete-filled-steel-tubes", Thin Wall. Struct., 181, 110138. https://doi.org/10.1016/j.tws.2022.110138.
  12. Mander, J.B., Priestly, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng. ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  13. Patel, K. and Thakkar, S. (2013), "Analysis of CFT, RCC and steel building subjected to lateral loading", Procedia Eng., 51, 259-265. http://doi.org/10.1016/j.proeng.2013.01.035.
  14. Romero, M.L., Espinos, A., Portoles, J.M., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99, 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026.
  15. Sun, H., Ding, F., Wang, L., Lyu, F. and Li, B. (2023), "Experimental and analytical study of thin-walled stirrup-confined CFST piers under pseudo-static loading", J. Constr. Steel Res., 210, 108047. https://doi.org/10.1016/j.jcsr.2023.108047.
  16. Sun, H., Xu, Q., Ding, F., Wang, L., Lyu, F. and Sadat, S.I. (2024), "Seismic behavior of thin-walled stirrup-confined circular concrete-filled steel tube piers: Experimental, numerical, and restoring force model analysis", Soil Dyn. Earthq. Eng., 176, 108310. https://doi.org/10.1016/j.soildyn.2023.108310.
  17. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  18. Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. http://doi.org/10.12989/scs.2016.20.3.571.
  19. Wang, E., Lyu, F., Ding, F., Chen, J. and Liu, X. (2024), "Experimental and numerical study of stirrup-confined concrete-filled L-shaped steel tube stub column under axial compression", Struct. Concrete, 25(3), 1865-1883. https://doi.org/10.1002/suco.202300435.
  20. Wang, L., Cao, X., Ding, F., Lou, L., Sun, Y., Liu, X. and Su, H. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.
  21. Wang, W.D., Ji, S.H. and Shi, Y.L. (2023), "Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading", J. Constr. Steel Res., 201, 107714. https://doi.org/10.1016/j.jcsr.2022.107714.
  22. Wang, Z.B., Tao, Z. and Yu, Q. (2017), "Axial compressive behavior of concrete-filled double-tube stub columns with stiffeners", Thin Wall. Struct., 120(11), 91-104. https://doi.org/10.1016/j.tws.2017.08.025.
  23. Wang, Z.B., Tao, Z. and Yu, Q. (2017), "Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners", Thin Wall. Struct., 120, 91-104. http://doi.org/10.1016/j.tws.2017.08.025.
  24. Xu, Q., Sun, H., Ding, F. and Lyu, F. (2023), "Analysis of ultimate seismic performance of thin-walled concrete-filled steel tube bridge piers under dynamic load", Eng. Struct., 292, 116544. https://doi.org/10.1016/j.engstruct.2023.116544.
  25. Yanli, S., Xiaoxiao, l., Wenda, W. and Sunhang, J. (2023), "Mechanical behavior of concrete-filled double steel tubular stub columns under axial compression", J. Build. Struct., 44(7), 129-141. https://doi.org/10.14006/j.jzjgxb.2022.0057.
  26. Zhao, D., Zhang, J., Ma, Z., Liu, F., Zhao, G., Zhang, W. and Song, H. (2023), "Experimental study of the behavior under axial compression of steel tube confined concrete with a circular hollow section (STCC-CHS)", Ocean Eng., 285, 115297. https://doi.org/10.1016/j.oceaneng.2023.115297.