References
- ACI350.3 (2020), Seismic Design of Liquid-containing Concrete Structures and Commentary (ACI 350.320), American Concrete Institute, Farmington Hills, MI, USA.
- Bilyk, S., Grinfeld, M. and Segletes, S. (2013), "Operational equations of state for hydrocode: Computer implementation", Proc. Eng., 58, 424-432. https://doi.org/10.1016/j.proeng.2013.05.049.
- Chen, J. and Kianoush, M. (2005), "Seismic response of concrete rectangular tanks for liquid containing structures", Can. J. Civil Eng., 32(4), 739-752. https://doi.org/10.1139/l05023.
- Chiou, B., Darragh, R., Gregor, N. and Silva, W. (2008), "NGA project strong-motion database", Earthq. Spectra, 24(1), 23-44. https://doi.org/10.1193/1.2894831.
- Cho, J.R. and Lee, J.K. (2002), "Axisymmetrical free vibration analysis of liquid-storage tanks considering the liquid compressibility", Struct. Eng. Mech., 13(4), 355-368. https://doi.org/10.12989/sem.2002.13.4.355.
- Chopra, A.K. (2005), Earthquake Dynamics of Structures: A Primer, 2nd Edition, Earthquake Engineering Research Institute (EERI), Oakland, CA, USA.
- Curadelli, O. (2013), "Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks", J. Constr. Steel Res., 83, 166-176. https://doi.org/10.1016/j.jcsr.2012.12.022.
- Dutta, S.C., Murty, C. and Jain, S.K. (2000), "Seismic torsional vibration in elevated tanks", Struct. Eng. Mech., 9(6), 615-636. https://doi.org/10.12989/sem.2000.9.6.615.
- EN and BS (2004), Eurocode 2: Design of Concrete Structures, European Committee for Standardization, Brussels, Belgium.
- Fiore, A., Demartino, C., Greco, R., Rago, C., Sulpizio, C. and Vanzi, I. (2018), "Seismic performance of spherical liquid storage tanks: A case study", Int. J. Adv. Struct. Eng., 10(2), 121-130. https://doi.org/10.1007/s4009101801851.
- Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Am., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381.
- Huang, J. and Zhao, X. (2018), "Control of three-dimensional nonlinear slosh in moving rectangular containers", J. Dyn. Syst. Measure. Control, 140(8), 081016. https://doi.org/10.1115/1.4039278.
- Jing, W., Chen, P. and Song, Y. (2020), "Shock absorption of concrete liquid storage tank with different kinds of isolation measures", Earthq. Struct., 18, 467-480. https://doi.org/10.12989/eas.2020.18.4.467.
- Kalogerakou, M.E., Maniatakis, C.A., Spyrakos, C.C. and Psarropoulos, P.N. (2017), "Seismic response of Liquid-containing tanks with emphasis on the hydrodynamic response and near-fault phenomena", Eng. Struct., 153, 383-403. https://doi.org/10.1016/j.engstruct.2017.09.026.
- Kildashti, K., Mirzadeh, N. and Samali, B. (2018), "Seismic vulnerability assessment of a case study anchored liquid storage tank by considering fixed and flexible base restraints", Thin Wall. Struct., 123, 382-394. https://doi.org/10.1016/j.tws.2017.11.041.
- Kim, M.K., Lim, Y.M., Cho, S.Y., Cho, K.H. and Lee, K.W. (2002), "Seismic analysis of base-isolated liquid storage tanks using the BE-FE-BE coupling technique", Soil Dyn. Earthq. Eng., 22(912), 1151-1158. https://doi.org/10.1016/S02677261(02)001422.
- LSTC (2007), LSDYNA Keyword User's Manual Version 971, Livermore Software Technology Corporation, Livermore, CA, USA.
- Maedeh, P.A., Ghanbari, A. and Wu, W. (2017), "Estimation of elevated tanks natural period considering fluid-structure-soil interaction by using new approaches", Earthq. Struct., 12(2), 145-152. https://doi.org/10.12989/eas.2017.12.2.145.
- Mandal, K.K. and Maity, D. (2015), "Nonlinear finite element analysis of elastic water storage tanks", Eng. Struct., 99, 666-676. https://doi.org/10.1016/j.engstruct.2015.04.050.
- Mandal, K.K. and Maity, D. (2016), "Nonlinear finite element analysis of water in rectangular tank", Ocean Eng., 121, 592-601. https://doi.org/10.1016/j.oceaneng.2016.05.048.
- Nayak, C.B. and Thakare, S.B. (2019), "Seismic performance of existing water tank after condition ranking using nondestructive testing", Int. J. Adv. Struct. Eng., 11(4), 395-410. https://doi.org/10.1007/s4009101900241x.
- Oden, J.T. (2006), Finite Elements of Nonlinear Continua, Courier Corporation, North Chelmsford, MA, USA.
- Ramsey, S.D., Schmidt, E.M., Boyd, Z.M., Lilieholm, J.F. and Baty, R.S. (2018), "Converging shock flows for a Mie-Gruneisen equation of state", Phys. Fluids, 30(4), 046101. https://doi.org/10.1063/1.5018323.
- Rezaiee-Pajand, M. and Kazemiyan (2016), "Analytical solution for free vibration of flexible 2D rectangular tanks", Ocean Eng., 122, 118-135. https://doi.org/10.1016/j.oceaneng.2016.05.052.
- Seleemah, A.A. and El-Sharkawy, M. (2011), "Seismic analysis and modeling of isolated elevated liquid storage tanks", Earthq. Struct., 2(4), 397-412. https://doi.org/10.12989/eas.2011.2.4.397.
- Shyue, K.M. (2001), "A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state", J. Comput. Phys., 171(2), 678-707. https://doi.org/10.1006/jcph.2001.6801.
- Spritzer, J. and Guzey, S. (2017), "Nonlinear numerical evaluation of large open-top aboveground steel welded liquid storage tanks excited by seismic loads", Thin Wall. Struct., 119, 662-676. https://doi.org/10.1016/j.tws.2017.07.017.
- Standard, N. (2005), NS 3473 E Concrete Structures: Design Rules, Norwegian Council for Building Standardization, Oslo, Norway.
- Vern, S., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2021), "Evaluation of the seismic response of liquid storage tanks", Earthq. Struct., 21(2), 205-217. https://doi.org/10.12989/eas.2021.21.2.205.
- Zanni, A.A., Spyridis, M.S. and Karabalis, D.L. (2020), "Discrete model for circular and square rigid tanks with concentric openings-Seismic analysis of a historic water tower", Eng. Struct., 211, 110433. https://doi.org/10.1016/j.engstruct.2020.110433.
- Zhang, R., Cheng, X., Guan, Y. and Tarasenko, A.A. (2017), "Seismic response analysis of an unanchored vertical vaulted-type tank", Earthq. Struct., 13(1), 67. https://doi.org/10.12989/eas.2017.13.1.067.
- Zhou, D. and Liu, W. (2007), "Hydro-elastic vibrations of flexible rectangular tanks partially filled with liquid", Int. J. Numer. Method. Eng., 71(2), 149-174. https://doi.org/10.1002/nme.1921.