
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

186

Manuscript received September 5, 2024
Manuscript revised September 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.9.21

Design and Implement A Hybrid WebRTC Signalling
Mechanism for Unidirectional & Bi-directional Video

Conferencing

Naktal Edan†, Ali Al-Sherbaz††, and Scott Turner†††
naktal.edan@northampton.ac.uk ali.al-sherbaz@northampton.ac.uk scott.turner@northampton.ac.uk

† School of Science and Technology, Northampton University, Northampton, United Kingdom
† College of Computers Sciences and Mathematics, Mosul University, Mosul, Iraq

†† School of Science and Technology, Northampton University, Northampton, United Kingdom
††† School of Science and Technology, Northampton University, Northampton, United Kingdom

Abstract
WebRTC (Web Real-Time Communication) is a technology that
enables browser-to-browser communication. Therefore, a
signalling mechanism must be negotiated to create a connection
between peers. The main aim of this paper is to create and
implement a WebRTC hybrid signalling mechanism named
(WebNSM) for video conferencing based on the Socket.io (API)
mechanism. WebNSM was designed over different topologies
such as simplex, star and mesh. Therefore it offers several
communications at the same time such as one-to-one
(unidirectional/bidirectional), one-to-many (unidirectional) and
many-to-many (bi-directional) without any downloading or
installation. In this paper, WebRTC video conferencing was
accomplished via LAN and WAN networks, including the
evaluation of resources in WebRTC like bandwidth consumption,
CPU performance, memory usage, Quality of Experience (QoE)
and maximum links and RTPs calculation. This paper presents a
novel signalling mechanism among different users, devices and
networks to offer video conferencing using various topologies at
the same time, as well as other typical features such as using the
same server, determining room initiator, keeping the
communication active even if the initiator or another peer leaves,
etc. This scenario highlights the limitations of CPU performance,
bandwidth consumption and the use of different topologies for
WebRTC video conferencing.
Keywords:
The Real-Time Web Communication (WebRTC), Socket.IO
signalling mechanism, Local Area Network (LAN), Wide Area
Network (WAN), Quality of Experience (QoE), Mesh topology
and a Web New Signalling Mechanism (WebNSM).

1. Introduction

WebRTC (Web Real-Time Communication) was
developed as a standard by the World Wide Web
Consortium (W3C) and Internet Engineering Task Force
(IETF) [1] . It is an open source and a collection of
protocols and standards [2]. WebRTC allows the
transportation of audio, video and data. Also, it does not
need plug-ins, licensing, downloads and so on [3]. It is a
technology that consists of three principal components [22]:

getUserMedia: allows a web browser to access the camera
and microphone and to capture media,
RTCPeerConnection: manages the peer-to-peer connection
and RTCDataChennel: allows browsers to share arbitrary
data. On the other hand, WebRTC does not specify any
particular signalling mechanism or protocol between the
client and the server [4]. Moreover, it does not support the
multi-browser communication essential for conferencing
over participating browsers [5]. Including, the client-server
architecture that does not seem to be a feasible solution [6].
Therefore, choosing the suitable network topology in the
architectural design of the WebRTC application is
considered as one of the most potential problems. Thus, it
must select an architecture for the application while
dealing with a multiparty of audio/video call in WebRTC
[7].

A signalling mechanism is the core of peer
detection that coordinates the communication between
users; it starts exchanging media and supports the
establishing communication among users [1]. Signalling
connects the browser to a server and permits the
participants to access this server. Moreover, it supports the
SDP (Session Description Protocol) that combines the
network addresses and port numbers for the media
exchange [7]. In this implementation, Firefox that enables
video and file sharing between browsers was used. It uses
Opus audio codec which is a high-quality audio format [8].
Many experiments have been achieved to offer video calls
in WebRTC. Therefore, some of them are used
XMLHttpRequest (XHR/polling). However, using XHR
leads to waste of bandwidth and delay, as long as the
browser keeps polling for data regularly and the server
continues responding even when no messages can be sent
or received [9]. XHR is active with communication that
does not need to full duplex approach, in this way it is

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

187

used only for pushing messages from the server to the
client [10]. In addition, several developers used SIP
(Session Initiation Protocol) with WebRTC to obtain video
calls/chat, however SIP still needs software such servers
and installation [11]. Besides, the current real-time
communication APIs in an application is more cost
efficient and faster than developing a SIP client [12].
Furthermore, SIP has a high bandwidth consumption and
delays as compared with other protocols such as
Inter-Asterisk eXchange2 (IAX2) [13]. In this paper,
WebNSM was created for video conferencing based on
RTCPeerConnection (API) using socket.io mechanism to
connect between each of the browsers. Socket.io (API)
offeres real-time bi-directional communication between a
client and a server [14]. RTCPeerConnection (API) is an
array of URL objects that send any ICE (Interactive
Connectivity Establishment) candidates to the other peer,
handles the video stream, and starts offer/answer
negotiation process, etc [15]. WebNSM can provide
different characteristics as follows: (a) one-to-one
(Bi-directional) video conferencing, (b) one-to-one
(unidirectional) video conferencing, (c) one-to-many
(unidirectional/star) video conferencing, (d) many-to-many
(bi-directional/ mesh) video conferencing, (e) provides two
kinds of communications, so each peer is free to be as a
broadcaster or viewer, (f) determine room initiator, (g)
keep a session productive even another participant leaves,
(h) participants are able to share with all users in mesh, (i)
join existing session, (j) stop self-streams and (k) sharing
new user with current participants. Furthermore, WebNSM
is useful to be used for various communications. For
example, m-Health (many doctors can communicate many
technicians and patients), e-learning (many teachers can
communicate many students and many students can
communicate others), communication applications, etc. In
addition, it gives a user a full flexibility to use appropriate
topology according to its resources limitations.

The essential objectives of this paper are to create a
hybrid signalling mechanism to serve different topologies
at the same time. In addition to designing and
implementing a WebRTC video conferencing for many
users, including an evaluation of signalling performance,
bandwidth consumption, CPU performance, memory
usage, Quality of Experience (QoE), using mesh topology
(full duplex), star topology (simplex/unidirectional) and
calculating the maximum links and RTP (Real Time
Protocol).

This paper is organised and outlined as follows,
Section II reports on survey WebRTC related work. In
section III, the methodology of the paper is explained

along with implementation and analysis. Section IV
discusses the evaluation. Finally, Section V has the
conclusion and future work.

2. Related Work

Different developers attempted to create or develop
a signalling mechanism or a protocol for WebRTC.
However, most of them faced some reasons. The following
elaborations will describe some of these issues:

As mentioned in [16], signalling management has not
yet been specified by WebRTC to allow the developer to
modify, reuse existing protocols and permits them freedom
to design their signalling to avoid redundancy and to
increase compatibility with established technologies [11].
Moreover, an overview of WebRTC video conferencing
architecture using MCU (Multipoint Conferencing Unit)
was shown in [17], including a demonstration of some of
the challenges such as CPU performance, bandwidth
availability, etc. However, this scenario does not discuss
any signalling mechanism or protocol while the proposed
test was relying on using MCU that can be applied using a
single connection. Also, [17] ran an application of
WebRTC video conferencing using the Licode-Erizo
(MCU) and Samsung Galaxy for each participant. Licode
offers a client API with -Erizo that handles connections for
virtual rooms and a server API for communication.
Nevertheless, without using the third party (Licode-Erizo)
it cannot run this application. The test was achieved
among three rooms each room consists of maximum three
participants, as well as they have not presented anything
about the signalling mechanism. On the other hand, as
illustrated in [18], using MCU is very expensive, and [19]
mentioned that MCU is costly and it can be rented from
service providers during a conference, although some
video conferencing CODECs are able to support a specific
number of multipoint (e.g. up to 4 users). Adding to that,
[18] emphasised that MCU consumes a significant amount
of bandwidth.

According to [20], implemented REST APIs
(Representation State Transfer) interoperating with SIP
(Session Initiation Protocol) over WebSocket protocol to
control the signalling message exchange for the
audio/video call via Chrome. However, the signalling
should be supported by a central component (named REST
service) to exchange messages and establish media
channel, besides another intermediary is needed for SIP
User Agent to manage the signalling flow. REST service
(as a middle signalling) was not discussed and only
focused on the message flow for location update services.
In addition, the communication had 5 seconds in delay and
was done between only two browsers. Additionally, [21]
evaluated the performance of WebRTC video calls using
the node.js server, WebSocket protocol for the signalling
and TURN servers. This evaluation was done over

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

188

different topologies such as a mesh (using separate
switches) and star (using MCU). On the other hand, the
calls were established between three participants in each
topology using a fake device and video sequence in VGA
frame instead of employing a live camera. The media bit
rate is set by the browser as 2Mbps maximum value.
Besides, all calls were forced to stream through the TURN
servers. Moreover, [11] designed and implemented a novel
WebRTC signalling mechanism for chat messages using
WebSocket via Node.JS cross-platform on the local host.
The signalling of this application only supports a chat
between two peers.

3. Methodology, implementation and analysis

3.1 Methodology

Thirty computers were used as seventeen PCs (CPU
Xeon & 16 GB RAM), three Laptops (core i5 & 4-8 GB
RAM), ten PCs (CPU Core i5 and i7 with 4-12 GB RAM)
were connected through Wired of LAN and WAN
networks, cameras and microphones.

3.2 Implementation

A test-bed lab was created to implement a hybrid
signalling mechanism in real implementation for video
conferencing. Therefore, several methods and APIs have
been embedded to be used coherently. This
implementation can be divided into following:

3.2.1 Setup a Browser Web Page

The main HTML (web page) of this experiment was
programmed using JavaScript and Firefox to set up many
features, such as opening room, mute-audio/video, using
full-screen, using volume slider and screenshot. In the
beginning, to open a room there must always be a room
initiator while the participants are free to select "As
Viewer" to watch and listen to the broadcaster or select "As
Broadcaster" to set up bi-directional video conferencing, as
well as the communication can include both as broadcaster
and viewer to stream and view the video. All peers do not
need to specify "user-id" since they are using the same URL
as "user-id" to access the main page. Otherwise, they cannot
join the room. In this application, communication has one
initiator and different peers as viewers and broadcasters.

When the room is opened, it will arbitrarily audio and
video to present MediaStream, which can be obtained using
navigator.getUserMedia() method to create a synchronised
video and audio. After getUserMedia, a web browser will
request permission to access the camera and microphone to
capture peer’s screen. A camera will start streaming when
the permission is given; now the application is ready for

other peers to join the room. On the other hand, when peers
would like to be as viewers they do not need to invoke their
camera and microphone, while they will only receive
videos. These steps of opening/joining the room applies to
every peer, as well as stopping the streaming of their
camera/microphone without influencing on the rest. Figure
(1) shows the main page and the options.

Fig 1, shown the main web page using Firefox

3.2.2 WebNSM (A Hybrid Signalling Mechanism)

This signalling must occur before a Peer-to-Peer (P2P)
connection can be occurred [23]. WebNSM was created
using RTCPeerConnection API and socket.io (API)
mechanism for an instant handshake. Therefore, WebNSM
must be carried out before streaming can begin between
peers. It relies on offer and answers negotiation process to
describe the SDP (Session Description Protocol) of the
session. The offerer is a peer who initiates the session to
connect other peers. In contrast, the answerer is asked for
connection from the offerer. The offerer is assumed to know
the answerer’s URL and then requests a connection through
WebNSM. When the initiator opens the main room,
WebNSM will be ready to support any offerer and detect a
room presence. Thus, several functions and steps have
been employed to create it. First of all, it should transmit
the data as a String and setup a default channel passed
through constructor using "connection.channel = channel ||
RMCDefaultChannel". Additionally, it connects with a
signalling channel when only the first participant is found
using invoke "getUserMedia" then initRTCMultiSession
function.

WebNSM was built to accomplish many
characteristics, such as determining the room initiator
"connection.initiator = true", allowing a single user to join
a room "connection.join = joinSession", keeping a session
active even if the initiator leaves (clone data from initial
moderator to the second initiator and make sure that if

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

189

second leaves. The control is shifted to a third person if the
initiator wants to close an entire session then shifts the
initiation control to another user), hearing new user with
existing participants on New Participant (response)’’,
participants are shared with a single user or with all users,
if the initiator disconnects sockets, participants should also
disconnect, close the entire session, reject user-id,
disconnect for all, open private socket that is used to
receive offer-sdp "newPrivateSocket" and ask other users
to create offer-sdp and function PeerConnection. They also
utilise RTC (Real Time Connection) to send data
"connection.send = function(data, _channel)", initialize
"RTCMultiSession" which is the backbone object. The
custom devices are selected and screen_constraints, such
as a screen.width, screen.height. Participants also check if
the screen-capturing extension is installed. When a stream
is stopped, it must be removed from "attachStreams" array
to allow re-capturing of the screen, if the muted stream is
negotiated, audio/video are fired earlier than screen, stop
local stream ‘’if (response.stopped)’’, stop remote stream
‘’if (response.promptStreamStop’’, create an offer SDP
using "createOffer() " function, create answer SDP using
"createAnswer()" function, createDescription() function,
getBrowserInfo() function, construct a new
RTCPeerConnection, trigger the stun server request, match
just the IP address, remove duplicates, listen for candidate
events and etc.

To establish a peer-to-peer connection, both clients
need to create an RTCPeerConnection object. Then, each
peer needs to obtain their Session Description, an object
that indicates what kind of data they want to send to the
other client through the connection and what they can do by
built-in methods of the RTCPeerConnection object. Thus,
the offerer will send the request to the answerer for the
availability, including SDP offer to receive audio and video.
The answerer (initiator/broadcaster) will receive the request
and sends a confirmation of the availability as "room is
active" with the SDP constraints to receive audio and video.
The offerer gets the remote stream and creates an offer
using "getLocalDescription" with RTCPeerConnection.
Additionally, the offerer creates DataChannel method
which is added to the RTCPeerConnection to create an
"RTCDataChannel" object. When an "RTCDataChannel"
on the offerer’s side is generated, the offerer invokes
"createOffer" of RTCPeerConnection, thereby enabling
"createOffer" to return an offerer’s SDP message. The
offerer enables the SDP-offer message by setting various
information and send them through WebNSM. For instance,
bandwidth information, using the period audio and video
codecs, etc. Additionally, both the offerer and answerer
change WebNSM state to "stable", to realise that there is no
offer/answer exchange in progress. Once the "SDP-offer"

message reaches the answerer through WebNSM, the
answerer also initiates its RTCPeerConnection instance to
accept the request. The answerer uses the "SDP-offer" into
its RTCPeerConnection to create an "SDP-answer" and
then forward it to the offrer. Also, the two clients need to
exchange information about communication methods that
they can use to reach each other. These communication
methods are known as ICE Candidates and they will be
exchanged through the WebNSM. Now the answerer and
offerer are able to respond and they both configure the Real
Time Communication (RTC) packets transported. After two
peers exchange SDP-offer/answer and ICE candidates, they
can create their session. The answerer and offerer "add
SDP" to candidate UDP by the host IP for both of them. The
other participants can join the session based on similar
steps.

Fig 2, presents the signalling among broadcasters

According to a communication as viewers, when an
initiator is active for streaming, a peer is able to accede the
room as a viewer after detecting a room presence using

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

190

WebNSM. WebNSM sends a notification to the initiator
that " a participant has asked for availability and the target
has no stream". In other words, it is a unidirectional video
conferencing from an initiator to a viewer. An initiator
receives a request and sends a confirmation of the
availability as "room is active" with the SDP constraints.
Thus, an initiator has started broadcasting the audio and
video to the viewer. In contrast, if there are other
broadcasters, a viewer will communicate all of them, so the
viewer can communicate all broadcasters by receiving their
audio and video at the same time. In addition, a session can
be active even if any broadcaster leaves; also all viewers
communicate all broadcasters at the same time.

3.3 Analysis

This test was achieved among thirty peers during
three to four minutes over Local Area Network (LAN) and
Wide Area Network (WAN). The Quality of Experience
(QoE) was used because it offers significant insight for
developers on how the peers experience the quality of their
video and audio applications [3]. Also, a measurement of
CPU and memory usage using the task manager of
Windows 10 within the established connection was
obtained, including WebNSM performance via inspect
element of Firefox in real-time communication. The
analysis can be explained as follows:

3.3.1 WebNSM (A Hybrid Signalling Mechanism)

A performance of WebNSM has been analysed
individually among two to thirty users according to two
concepts; the first was based on the delay to get ready and
the second depends on sending a request and receiving a
response. Therefore, WebNSM over LAN network
consumes 79 (milliseconds/ms) as minimum consumption
and 113 (ms) as maximum consumption to get ready, as
well as it consumes 106 (ms) as a minimum use and 120
(ms) as maximum consumption to send a request and
receive a response. The mean time was calculated so
WebNSM expands 89 (ms) to be ready and expands 111
(ms) to send a request and receive a response. On the other
hand, WebNSM over WAN network consumes 78 (ms) as
minimum consumption and 89 (ms) as maximum
consumption to get ready, as well as it consumes 106 (ms)
as minimum consumption and 124 (ms) as maximum
consumption to send a request and receive a response. The
mean time was calculated so it expands 83 (ms) to be
ready and expands 111 (ms) to send a request and receive a
response. Based on the consumed time, it has noticed that
LAN & WAN networks are exhibited a convergent
consumption. WebNSM has an efficient performance
while it leads to setup, establish and end a session.

3.3.2 Quality of Video Conferencing

Actual users have participated in this scenario to give their
individual opinions on the perceived user experience by
the use of questionnaires. The quality of audio and video
has been analysed based on three topologies:

 Bidirectional (mesh): the quality of audio and video

up to ten peers using bi-directional system were
excellent. However, due to CPU limitations, the
increasing of a number of peers influenced the quality
of audio and video. Thus, it would not raise the
number of users, while CPU capability was not able to
communicate anymore.

 Unidirectional (simplex): this scenario was specified
for viewers. All viewers were connecting to all
broadcasters from different devices concurrently, but
they were not able to connect between themselves.
The quality of audio and video up to thirty peers as
one broadcaster and 29 viewers using unidirectional
system were excellent. Nevertheless, it would not
increase the number of viewers, while CPU capability
was not able to communicate anymore.

 Hybrid (Bi-directional & Unidirectional) system: the

quality of audio and video using both topologies were
excellent. Nevertheless, due to CPU limitations, the
number of users was limited especially when the
number of broadcasters was raised. Moreover, as
much as the number of broadcasters is decreased it
would be possible to enhance the number of viewers,
while the broadcasters are using mesh topology, which
needs a high CPU usage.

3.3.3 Mesh Topology

In a mesh, any conference member can invite
another user to join or leave at any time without influencing
the remaining participants. In addition, all peers connect
among themselves to transmit data from different devices
simultaneously. Thus, many links can be created among
peers, so there is p*(p-1) number of connections where p is
the number of peers. Moreover, each peer needs a
minimum of four RTP (Real Time Protocol) to transmit
data. Therefore, communication in mesh requests a high
CPU and high bandwidth speed, as long as each peer sends
and receives different RTPs from the all connected
participants at the same time as illustrated: one RTP port
for outgoing video, one RTP port for outgoing audio, one
RTP port for incoming video and one RTP port for
incoming audio.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

191

3.3.4 CPU Performance

It plays a significant role on WebRTC video
conferencing, especially using mesh topology. In this
experiment, a Xeon CPU was used which is a new
generation that has very high performance and bandwidth
connectivity to meet the most exacting camera viewing,
management needs and processing [24], including CPU
core i5 and i7 was used. Mesh handles a high load due to
different sources is sending and receiving the videos at the
same time, this loading will impact the CPU performance
which in turn affects the quality of audio and video. On the
other hand, CPU performance in the hybrid unidirectional
system was exhibited with rather a low usage than
bi-directional. In the meantime, using unidirectional
system requires CPU abilities less than the bi-directional
system. Each viewer requires a maximum of two RTPs
(Real Time Protocol) from each broadcaster to receive data
as one RTP port for incoming video and one RTP port for
incoming audio. Using simplex will promote resources
while it requires less CPU and bandwidth consumptions
than mesh topology. Figure (3) displayed the CPU
performance on the broadcaster side.

Fig 3, shows CPU performance based on the initiator end over both LAN
and WAN networks

3.3.5 Memory Usage

Practically, memory did not consume much
capabilities while peers only need to hold a small amount
of session state data, such as when peers are connected.
Also, the conferencing was in real time; therefore, there is
no need to utilise a high memory as needed for storing or
uploading data. Memory usage did not impact the quality
of the audio and video or communication, so all needed
over LAN and WAN networks was between 18% to 38%.

3.3.6 Bandwidth Consumption

Different users have different bandwidth speed
while each peer might use the various browser, as well as
bandwidth requires to handle the overall session grows for
every new participant [14]. In this fashion, each browser is
built or can be forced based on several video codec and
audio codec so that they will consume different bandwidth
depends on their codecs. This system used Firefox that
relies on Opus audio codec which can change bitrates
dynamically from 6 kb/s to 510 kb/s [25]; and VP8 as a
video codec. According to this analysis, the following
results were found: each peer needs to minimum 1Mb/s
bandwidth for each RTP on the video via LAN and WAN
networks and needs to 52 - 55 kb/s bandwidth for each RTP
on the audio via LAN and WAN networks. As a
consequence, bandwidth consumption leads to a bottleneck
on the client end, which effects on Quality of Experience
(QoE) of video and audio, and the performance may drop
significantly [26]. Figures (4,5,6&7) present the difference
of bandwidth consumption via broadcasters and viewers on
LAN and WAN networks.

Fig 4, demonstrates the bandwidth consumption of audio and video over
LAN network as broadcasters. The unit of bandwidth is kb/s

Fig 5, displays the bandwidth consumption of audio and video over WAN

network as broadcasters. The unit of bandwidth is kb/s

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

192

Fig 6, shows the bandwidth consumption of audio and video over LAN

network as viewers. The unit of bandwidth is kb/s

Fig 7, illustrates the bandwidth consumption of audio and video over
WAN network as viewers. The unit of bandwidth is kb/s

3.3.7 Hybrid Topology

A host peer should initiate and start its browser to
allow any user to participate in the session at any time
without affecting the remaining participants, so using
different systems allowing all peers to connect with each
other as viewers and broadcasters to transmitted data from
different devices simultaneously. A hybrid uses different
topologies and gives the users flexibility, reliability and
multi-choice of communications such as initiator,
broadcaster or viewer. Moreover, it allows several
resources such as devices, networks and users to obtain
video conferencing without any registration, downloading
or installation and can be used in different applications.
Using this scenario shows that it built a strong WebRTC
application that works across multiple browsers, networks
and topologies. Figure (8), indicates the architecture of the
hybrid system.

Fig 8, demonstrates the architecture of hybrid systems

4. Evaluation

It is proved that WebNSM is able to setup,
establish and close a session over LAN or WAN networks.
WebNSM is able to offer simplex (unidirectional), star
(unidirectional) and mesh topology (bi-directional). On the
contrary, it is affected by the CPU, which limits the
number of peers. A performance of CPU and bandwidth
consumption has major issues in audio and video
conferencing, while video conferencing requests the
processor for decoding, encoding and providing the video
and audio concurrently. This can be defined as CPU stress
and it depends on different elements e.g. the used codec’s
and the quality of the audio and video. In addition, the
variety of bandwidth speeds among the various users can
impact the quality of video and audio. Therefore, mesh
topology requests a high CPU and high bandwidth speed.
For instance, when a user uses CPU core i5, they cannot
perform as another user, who uses CPU Xeon, etc. In other
words, as high as the CPU core, it will lead to allow more
peers to join, better communication and encoding &
decoding. Thus, CPU Xeon, which has very high
performance and bandwidth connectivity in order to find
out the difference among the existing CPUs, was used.
According to the indicated limitations, it can be
emphasised that CPU plays a significant role in
communication and the number of peers, as long a
bandwidth does a leading role in the quality of audio and
video. The available CPUs at the used computers (e.g.
Core i5 & Core i7) are not able to encode, decode, send
and receive video conferencing at the same time more than
eight peers via mesh topology in real implementation. This
is a very productive system that offers two mechanisms for
video conferencing. The user is free to choose the
appropriate mechanism based on its available bandwidth,
and CPU capabilities, as well as this system is changeable

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

193

as long as the user can change its position from
broadcaster to viewer conversely. Additionally, the
participant can simply join the session as a broadcaster
(using mesh) or as a viewer (using simplex), so using the
hybrid system reduces the load on the CPU and bandwidth
consumption efficiently and without impacting other
participants. The quality of experience (QoE) verifies that
this testbed environment works correctly and that it can be
used to conduct more extensive experiments on user
expertise in the future while having high core CPUs.

 5. Conclusion and Future Work

In this paper, a hybrid WebRTC signalling
mechanism and video conferencing using uni-directional
and bi-directional systems were designed and tested in real
implementation among thirty PCs. Besides, WebNSM can
be considered as a novel signalling mechanism while it
presents a flexible communication among users. Moreover,
this can be applied in different applications, such as get a
group of people together on one call at the same time,
conferencing among users, entertainment. e-Learning
between teacher and students, m -Health among patients
and doctor or specialist and technicians, etc. WebNSM
takes an average of 89 (milliseconds) to be ready and 111
(milliseconds) to send a request and receive a response,
even when the network is congested. A deep explanation
of CPU performance, memory usage, signalling
performance, RTPs calculation, QoE, mesh topology and
simplex topology in a physical implementation was done.
This scenario is efficient while it provides visually demo
over the various devices and networks with a user that
requires deep explanation and face-to-face communication.
Also, it improves communication & reinforces
relationships and increase productivity among users and
teams. In the future, there is an intention to expand this
work over more scalable video conferencing using
MATLAB simulator to discover the effectiveness of
resources in WebRTC.

Acknowledgment

This research was funded by the Ministry of Higher
Education in the Republic of Iraq, according to the
scholarship number (1469) in (03/04/2013) to sponsor the
first author to pursue his PhD research.

References
[1] J. Jang-Jaccard, S. Nepal, B. Celler, and B. Yan,

“WebRTC-based video conferencing service for
telehealth,” Computing, vol. 98, no. 1–2, pp. 169–193,
2016.

[2] M. Phankokkruad and P. Jaturawat, “An Evaluation of
Technical Study and Performance for Real-Time Face
Detection Using Web Real-Time Communication,” , no.

I4ct, pp. 162–166, 2015.
[3] L. O. D. Nedberg, “Quality of Experience of WebRTC

based video communication Eirik Fosser,” Norwegian
University of Science and Technology, 2016.

[4] D. T. Nguyen, K. K. Nguyen, S. Khazri, and M. Cheriet,
“Real- Time Optimized NFV Architecture for
Internetworking WebRTC and IMS,”, pp. 81–88, 2016.

[5] C. Y. Chiang, Y. L. Chen, P. S. Tsai, and S. M. Yuan, “A
video conferencing system based on WebRTC for
seniors,” in Proceedings - 1st International Conference
on Trustworthy Systems and Their Applications, TSA, pp.
51–56, 2014.

[6] S. Vashishth, Y. Sinha, and K. H. Babu, “Addressing
Challenges in Browser Based P2P Content Sharing
Framework Using WebRTC,” in IEEE 30th
International Conference on Advanced Information
Networking and Applications (AINA), pp. 850–857,
2016.

[7] Schahin Rajab, “Comparing different network
topologies for WebRTC conferencing,” 2015.

[8] R. Eskola and J. K. Nurminen, “Performance Evaluation
of WebRTC Data Channels,”, pp. 676–680, 2015.

[9] S. a S. T. Miner, “Getting Started with,” Packt>, pp.
1–41, 2013.

[10] R. Rai, Socket. IO Real-time Web Application
Development. BIRMINGHAM - MUMBAI: PACKT,
2013.

[11] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC
technology overview and signalling solution design and
implementation,” in 38th International Convention on
Information and Communication Technology,
Electronics and Microelectronics, MIPRO - Proceedings,
no. May, pp. 1006–1009, 2015.

[12] C. Notice and A. Notice, “WebRTC to complement IP
Communication Services,” 2016.

[13] N. M. Edan, A. Al-Sherbaz, S. Turner, and S. Ajit,
“Performance evaluation of QoS using SIP & IAX2
VoIP protocols with CODECS,” in Proceedings of SAI
Computing Conference, SAI, pp. 631–636, 2016.

[14] M. Grinberg, “socket.io Documentation,” 2016.
[15] D. C. B. Adam Bergkvist, B. A. Cullen Jennings, Anant

Narayanan, and B. and Taylor, “Real-time
Communication Between Browsers,” W3C, 2017.
[Online]. Available: https://w3c.github.io/webrtc-pc/.
[Accessed: 30-Aug-2017].

[16] Ana Pol González, “DEFINITION OF A MENA
OPINION SCORE FOR VP8 OVER REAL-TIME
CONNECTIONS,” Universida de Vigo, 2017.

[17] and M. S. D. Vučić, L. Skorin-Kapov, “The impact of
bandwidth limitations and video resolution size on QoE
for WebRTC-based mobile multi-party video
conferencing Faculty of Electrical Engineering and
Computing , University of Zagreb,” in 5th ISCA/DEGA
Workshop on Perceptual Quality of Systems, pp. 59–63,
2016.

[18] K. Fai Ng, M. Yan Ching, Y. Liu, T. Cai, L. Li, and W.
Chou, “A P2P-MCU Approach to Multi-Party Video
Conference with WebRTC,” Int. J. Futur. Comput.
Commun., vol. 3, no. 5, pp. 319–324, 2014.

[19] S. Potthast, “Point to Point and Multipoint,” Jisc
community, 2016. [Online]. Available:

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024

194

https://community.jisc.ac.uk/library/janet-services-docu
mentation/point-point-and-multipoint. [Accessed:
23-Aug-2017].

[20] T. Ambra, F. Paganelli, A. Fantechi, D. Giuli, and L.
Mazzi, “Resource-oriented design towards the
convergence of Web-centric and Telecom-centric
services,” in Second International Conference on Future
Generation Communication Technologies (FGCT),pp.
120–125, 2013.

[21] V. Singh, A. A. Lozano, and J. Ott, “Performance
analysis of receive-side real-time congestion control for
WebRTC,” in 20th International Packet Video Workshop,
PV, pp. 1–8, 2013.

[22] W. Elleuch, “Models for multimedia conference
between browsers based on WebRTC,” in International

Conference on Wireless and Mobile Computing,
Networking and Communications, pp. 279–284, 2013.

[23] A. Amirante, T. Castaldi, L. Miniero, and S. Romano,
“On the seamless interaction between webRTC browsers
and SIP-based conferencing systems,” in IEEE
Communications Magazine, vol. 51, no. 4, pp. 42–47,
2013.

[24] V. S. Class, “Complete solution More Features Easy,”
2016.

[25] K. Vos, “RTP Payload Format for the Opus Speech and
Audio Codec draft-IETF-payload-rtp-opus-11,” 2015.

[26] M. Villanueva, F. Valverde, and O. Pastor, Information
System Development. 2014.

