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Abstract 
This paper proposes dual symbol superposition block carrier 
transmission with frequency domain equalization (DSS-FDE) 
system. This system is based upon 𝜒-transform matrix, which is 
obtained by concatenation of discrete Hartley transform (DHT) 
matrix and discrete Fourier transform (DFT) matrices into single 
matrix that is remarkably sparse, so that, as it will be shown in this 
paper, it only has non-zero entries on its principal diagonal and one 
below the principle anti-diagonal, giving it shape of Latin alphabet 
𝜒. When multiplied with constellation mapped complex transmit 
vector, each entry of resultant vector is weighted superposition of 
only two entries of original vector, as opposed to all entries in 
conventional DFT based OFDM. Such a transmitter is close to 
single carrier block transmission with frequency domain 
equalization (SC-FDE), which is known to have no superposition. 
The DSS-FDE offers remarkable simplicity in transmitter design 
and yields great benefits in reduced complexity and low PAPR. At 
receiver-end, it offers the ability to harvest full diversity from 
multipath fading channel, full coding gain, with significant bit 
error rate (BER) improvement. These results will be demonstrated 
using both analytical expressions, as well as simulation results. As 
will be seen, this paper is Part III of three-paper series on 
alternative transforms for multicarrier communication (MC) 
systems. 
Keywords: 
OFDM, . Multicarrier Communication System, discrete Hartley 
transform (DHT), discrete Fourier transform (DFT) 
 

1.  Introduction 
 

The conventional orthogonal frequency division 
multiplexing (OFDM) transmission scheme comes with 
attractive features as well as some drawbacks. As discussed 
in detail Part I and Part II in this series, (see [1] and [2]), 
numerous approaches have been taken to address issues, 
including some existing work on use of alternative 
transforms [3]-[5]. 

 
In addition to employing the DHT itself as an 

alternative transform for MC system [[6][7], previous 
research on precoding OFDM using the DHT transform has 
been published [8]-[12]. The reduction of PAPR has been 
demonstrated [8]-[10], whereas analysis or error 

performance can be found in the [11]-[12]. It is shown in 
[12] that the concatenation of DHT and DFT matrices 
produces a sparse matrix, and it is efficient to implement it 
as a single transform. A similar observation was made in 
[11], where more commentary on lowering the transmitter 
complexity by combining the DHT and DFT into single 
transform and implementation mechanism is also proposed, 
along with some error performance.  

 
This paper delves into detail about the structure of the 

of the matrix that is obtained by the concatenation of DHT 
and DGT transforms. It will be shown that only the entries 
on the diagonal and one anti-diagonal below principle anti-
diagonal are the only places where it has non-zero entries. 
When such a matrix is multiplied with a transmission vector 
containing complex quadrature amplitude modulation 
(QAM) symbol, each entry in resulting vector is a weighted 
superposition of only two symbols from original vector. 
Thus, such a transmission can be classified as dual symbol 
superposition (DSS). This paper goes much deeper into 
analysis PAPR of such a transmission, and derives closed 
form PAPR expression, along with its cumulative 
distribution function (cdf). At receiver-end, sensitivity to 
timing synchronization, as well error performance analysis 
is carried out where it is shown that such a system can 
harvest full channel diversity and full coding gain. In the 
following, the contributions of this paper are summarized. 
 
A. Contributions of this Paper 
 
Following is the list of contributions of this paper. 
 
a) Element-wise analysis of the 𝜒 -transform matrix, 

including its structure and therefore its complexity 
implications are presented. 

b) The expression for cdf of PAPR of the DSS frequency 
domain equalization (DSS-FDE) is derived. 

c) Expression for signal to noise ratio (SNR) on the 𝑘  
subcarrier for the zero-forcing (ZF) and minimum 
mean squared error (MMSE) receiver is derived.  
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d) It is shown that DSS-FDE achieves full coding gain and 
can harvest channel diversity is performed for DSS-
FDE system. 

e) It is shown that, like conventional OFDM, the DSS-
FDE does not incur inter-symbol interference (ISI) 
penalty when the timing synchronization error is within 
a certain limit. 

 
The remainder of this paper is organized as follows. In 
Section 2, the DSS-FDE system is introduced, along with 
the analysis of 𝜒-transform matrix. Section 3 carries out 
analysis of PAPR, whereas Section 4 presents BER rate 
performance analysis. Section 5 discusses the sensitivity to 
timing synchronization and Section 6 comparison of 
computational complexity between DSS-FDE and SC-FDE. 
Section 7 concludes this paper. 
 
2. DSS-FDE System 
 

The DSS-FDE system is shown in Figure 1. At the 
transmitter, a transform obtained from the concatenation of 
the DHT and IFFT is used, which is denoted by 𝜒ℋ ≜
𝑭ℋ𝑯ℋ = 𝑭ℋ𝑯  because 𝑯ℋ = 𝑯 , where 𝑯  and 𝑯ℋ  are 
the DHT and inverse DHT (IDHT) matrices, respectively. 
Also, it can be seen that 𝑯 = 𝑯ℋ  because 𝑯 is unitary, 
such that 𝑯𝑯 = 𝑯ℋ𝑯ℋ = 𝑰 × . The inverse of 𝝌ℋ  is 
given as 𝝌 ≜ 𝑯𝑭 . One of the main motivations for this 
system is that 𝝌ℋ  and 𝝌  are sparse, facilitating low 
complexity implementation, as well as having a low PAPR 
at the transmitter. For 𝑁 × 𝑁 sized matrices 𝜒ℋ and 𝝌, the 

proportion of non-zero elements is only 
( )

, which is 

0.007 at 𝑁 = 256. 
 

Furthermore, all the non-zero entries of both 𝜒 and 𝜒ℋ 
are strictly on the main diagonal and one anti-diagonal 
below the main anti-diagonal, so that the structure of two 
matrices resembles the Greek letter 𝜒  (see Equation (3) 
below). It can be seen from the structure of matrices 𝝌 and 
𝝌ℋ  that only 2𝑁 + 2 complex multiplications and 𝑁 − 2 
additions will be required to perform the each of the two 
transforms. Since every row of these matrices contains no 
more than 2 non-zero entries, this system is referred to in 
this paper as dual symbol superposition (DSS) block 
transmission, with 𝝌ℋ  implemented as one transform as 
opposed to performing the DHT and IFFT transforms 
separately. 
 

To derive the structure of matrix 𝝌ℋ , assume that 𝑪 
and 𝑺 denote the cosine and sine matrices such that their 

(𝑢, 𝑣)th  entries are given as [𝑪] , =  cos 𝑢𝑣  and 

[𝑺] , = sin 𝑢𝑣  respectively, then 𝑪𝑺 = 𝑶 ×  and 

𝑪 + 𝑺𝑺 = 𝑰 . Furthermore, the (𝑢, 𝑣)th  entries of DHT and 
IFFT are given as [𝑯] , = [𝑪] , + [𝑺] ,  and [𝑭ℋ] , =

[𝑪] , + 𝑗[𝑺] , . Therefore, the (𝑢, 𝑣)th  entry of 𝝌ℋ can be 
obtained as follows 
 
      𝜒ℋ = (𝑪 + 𝑗𝑺)(𝑪 + 𝑺) = 𝑪𝑪 + 𝑪𝑺 + 𝑗𝑺𝑪 + 𝑗𝑺𝑺

  = 𝑪𝑪 + 𝑗𝑺𝑺              (∵ 𝑪𝑺 = 𝑺𝑪 = 𝑶 × )           (1)
 

 
From (1), it can be seen that 
 

[𝝌ℋ] ,  =     [𝑪] , [𝑪] , + 𝑗[𝑺] , [𝑺] ,

  =

⎩
⎪⎪
⎨

⎪⎪
⎧1  when  𝑢 = 𝑣 = 𝑚

𝑁

2
+ 1, 𝑚 ∈ {0,1}

1

2
+ 𝑗

1

2
 when  𝑢 = 𝑣 ≠ 𝑚

𝑁

2
+ 1, 𝑚 ∈ {0,1}     (2)

1

2
− 𝑗

1

2
 when  𝑣 = 𝑁 − 𝑢, 1 ≤ 𝑢 ≤ 𝑁 − 2

0  otherwise. 

 

 
As an example, the matrix 𝜒ℋ for 𝑁 = 8 is shown below 
 

𝜒 ×
ℋ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0

0
1

2
+ 𝑗

1

2
0 0 0 0 0

1

2
− 𝑗

1

2

0 0
1

2
+ 𝑗

1

2
0 0 0

1

2
− 𝑗

1

2
0

0 0 0
1

2
+ 𝑗

1

2
0

1

2
− 𝑗

1

2
0 0

0 0 0 0 1 0 0 0

0 0 0
1

2
− 𝑗

1

2
0

1

2
+ 𝑗

1

2
0 0

0 0
1

2
− 𝑗

1

2
0 0 0

1

2
+ 𝑗

1

2
0

0
1

2
− 𝑗

1

2
0 0 0 0 0

1

2
+ 𝑗

1

2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

                                                                                                                                (3) 
 

It should be noted that the product of 𝑯  and 𝑭ℋ  is 
commutative. This can be seen by substituting the 
expressions of 𝑭ℋ  and 𝑯, i.e., 
 
                            𝑭ℋ𝑯 = (𝑪 + 𝑗𝑺)(𝑪 + 𝑺) 
                     = 𝑪 + 𝑪𝑺 + 𝑗𝑺 + 𝑗𝑺𝑺 
                     = 𝑪 + 𝑗𝑺𝑺 ,        (∵ 𝑪𝑺 = 𝑺𝑪 = 𝑶 × )         (4) 
 
and then, we have 
 
          𝑯𝑭ℋ = (𝑪 + 𝑺)(𝑪 + 𝑗𝑺) 
                     = 𝑪 + 𝑗𝑪 + 𝑺𝑪 + 𝑗𝑺𝑺 
                     = 𝑪𝑪 + 𝑗𝑺𝑺                                                         (5) 
 
Similarly, it can be shown that the product of 𝑭 and 𝑯 is 
commutative. 
 

Figure 1 shows two possible receiver configurations. 
In the first approach, the 𝜒 transform is performed at the 
receiver, leaving the samples in the Hartley domain, which 
are then subjected to Hartley domain equalization (HDE). 
This configuration is referred to DSS-HDE in this paper. In 
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the second approach, the receiver performs the FFT first, 
carries out frequency domain equalization (FDE) and then 
performs DHT, so that this configuration is referred to DSS-
FDE. 
 
To see the output of the two receiver configurations, first 
the received sampled signal is given as 
 
                                       𝒚 = 𝑯 𝝌ℋ𝑿 + 𝜼,                             (6) 
 
where channel matrix 𝑯  is circulant because of cyclic 
prefix (CP) insertion and removal. Using the zero-forcing 
(ZF) equalizer in DSS-HDE configuration, it can be seen 
that (see also Figure 1(𝑎) ) 
 
                                   𝒀 = 𝝌𝑯 𝝌ℋ𝑿 + 𝝌𝜼

  = 𝑯𝑭𝑯 𝑭ℋ𝑯𝑿 + 𝝌𝜼

  = 𝑯𝑫𝑯 + 𝝌𝜼,                                   (7)

 

 
where 𝑫 = 𝑭𝑯 𝑭ℋ is used in the last equality. It is easy to 
see that ZF-HDE is given as, 𝛀 , = 𝑯𝑫 𝑯  and in 
such case, the estimate of the transmitted vector 𝑿 is given 
as 
 

  

�̂� ,  ≜ 𝛀 , 𝒀

  = 𝑯𝑫 𝑯𝝌𝑯 𝝌ℋ𝑿 + 𝑯𝑫 𝑯𝝌𝜼

  = 𝑯𝑫 𝑯𝑯𝑭𝑭ℋ𝑫𝑭𝑭ℋ𝑯𝑿 + 𝑯𝑫 𝑯𝑯𝑭𝜼

  = 𝑿 + 𝑯𝑫 𝑭𝜼,                                                    (8)

 

 
where third equality in (8) follows by substituting back 
𝑯 = 𝑭ℋ𝑫𝑭,  𝝌 = 𝑯𝑭  and 𝝌ℋ = 𝑭ℋ𝑯. 
 
Similarly, from Figure 1(b), using the ZF equalization in 
DSS-FDE configuration, the estimate of transmitted vector 
is 
            �̂� ,  ≜ 𝑯𝛀 , 𝑭𝑯 𝝌ℋ𝑿 + 𝑯𝛀 , 𝑭𝜼

  = 𝑯𝑫 𝑭𝑭ℋ𝑫𝑭𝑭ℋ𝑯𝑿 + 𝑯𝑫 𝑭𝜼

  = 𝑿 + 𝑯𝑭𝑯 𝑭ℋ𝑭𝜼,

  = 𝑿 + 𝑯𝑭𝑭ℋ𝑫 𝑭𝜼,

  = 𝑿 + 𝑯𝑫 𝑭𝜼,                                            (9)

 

 
where 𝛀 , FDE = 𝑫  is the ZF FDE equalizer and has 
been used in second equality in (9), 𝑫 = 𝑭𝑯 𝑭ℋ  has 
been used in third equality, and 𝑯 = 𝑭ℋ𝑫 𝑭 has been 
used in final equality. 
 
It can be seen that, for the ZF equalizer, the two systems in 
Figure (a) and (b) have identical estimate of transmitted 
vector and will match in error performance. Therefore, in 
the remainder of the paper, only DSS-FDE will be 
mentioned because it has slightly less complexity. 
 

In particular, since the DHT and DFT are implemented at 
same complexity [40] and the DSS-HDE performs one extra 
𝜒 transform, it has extra 2𝑁 − 2 multiplications and 𝑁 − 2 
additions. Furthermore, when compared to the conventional 
OFDM and SC-FDE, the DSS-FDE performs one extra 𝜒ℋ  
transform, so has same amount of extra complexity. 

 
(a) Receiver configuration with Hartley domain equalization 

 
(b) Receiver configuration with single-tap frequency domain equalization  

 
Figure 1: Transmitter of DSS-FDE system with two different 

receiver configurations 
 
However, the DSS-FDE matches SC-FDE in error 
performance as will be demonstrated in Section 4 by 
deriving both the SNR on the 𝑘th  subchannel of DSS-FDE 
as well as diversity order and coding gain achieved by it. 
 
3. PAPR of DSS-FDE System 
 

Since 𝝌ℋ is a sparse matrix, it has a low PAPR. The 
expression for the PAPR and its cdf are derived in this 
section. Recalling the PAPR of GMC in Theorem 1 of [1], 
and substituting 𝑸 = 𝝌ℋ , the PAPR of DSS-FDE can be 
written as, 

         𝛾 =
𝐴

2
max      𝑔[𝜒ℋ] ,         (10) 

where 𝑔 ∈ {±1 ± 𝑗}. 
 

It can be seen from Equation (1) that the first and + 1
th 

 

rows have only one non-zero entry, which is 1. Therefore, 
the PAPR on these subchannels will be 𝐴 . However, all 

the remaining rows contain both + 𝑗  and − 𝑗  as their 

only non-zero entries and, using Equation (10), the PAPR 
on these subchannel can found by finding the maximum 
across all the possible combinations of ±1 ± 𝑗. Therefore, 
it can be seen that, 
 

𝛾
,

=
𝐴

2
max±   ±

1

2
+ 𝑗

1

2
± 𝑗

1

2
+ 𝑗

1

2

±
1

2
− 𝑗

1

2
± 𝑗

1

2
− 𝑗

1

2
            (11) 
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with a total of 16 possible sign combinations, regardless of 
value of 𝑁  or constellation size 𝑀 . Through an rigorous 
exercise of going through these 16 combinations to find the 
maximum, it can be verified that the maximum of Equation 
(11) is 4 and therefore the PAPR of DSS-FDE is 
                                    𝛾 = 2𝐴 ,                          (12) 
 
which is twice the PAPR of single carrier SC-FDE system 

(lowest possible) but still  times lower than that of 

conventional OFDM. 
 
3.1. CDF of the PAPR of DSS-FDE System 
 

The PAPR expression is tends to be a pessimistic view 
of PAPR problem because it is theoretical maximum, and it 
may not occur very often. In order for the maximum PAPR 
to occur, all subchannel in MC system should be carrying 
certain maximum power quadrature amplitude modulation 
(QAM) symbols. Naturally, the probability of this 
happening decreases with increase in 𝑁  [13]. Since the 
PAPR is inherently a probabilistic phenomenon, another 
more insightful way of looking at it is finding the cdf. The 
cdf is calculated from the instantaneous PAPR because the 
value of PAPR at any point depends on the combination of 
QAM symbols in the current MC symbol. 
 

In the following, the cdf of DSS-FDE is derived. This 
derivation follows the well-known approach used for the 
derivation of cdf of zero-padded single carrier system [14]. 
If 𝒙  is the vector after inserting cyclic prefix into vector 
𝝌ℋ𝑿, the instantaneous PAPR for DSS-FDE is 
 

                       𝛾DSS-FDE ≜
max  𝒙 ,

1
𝑁 + 𝐿

𝐸∥∥𝒙 , ∥∥
                    (13) 

 
then the probability that PAPR will exceed a threshold value, 
𝛾 , is given as 
 

Pr 𝛾DSS-FDE > 𝛾  = Pr 
max  𝒙 ,

1
𝑁 + 𝐿

𝐸∥∥𝒙 , ∥∥
> 𝛾

  = Pr max  𝒙 , >
𝛾

𝑁 + 𝐿
𝐸∥∥𝒙 , ∥∥  (14)

 

 
It can be seen that maximum will not change before and 

after the insertion of cyclic, i.e., max   𝒙 , =

max  {|[𝒙 ] | } and 𝐸∥∥𝒙 , ∥∥ = 𝐸∥∥𝒙 ∥∥ , so then 

 

Pr 𝛾DSS-FDE > 𝛾  = Pr max {|[𝒙 ] | } >
𝛾

𝑁
𝐸∥∥𝒙 ∥∥

 = Pr max {|[𝒙 ] |} >
𝛾

𝑁
𝐸∥∥𝒙 ∥∥

 = Pr max {|[𝒙 ] |} > 𝛾 𝐸{|[𝒙 ] | }

 = 1 − Pr 𝑚𝑎𝑥 {|[𝒙 ] |} ≤ 𝛾 𝐸{|[𝒙 ] | }   (15)

 

 
Under the assumption that the symbols are independent and 
identically distributed (i.i.d.), they are drawn uniformly 
from the QAM constellation alphabet, 𝒜 . Therefore, 
[𝒙 ] , ∀𝑖, 𝑛 are also i.i.d. distributed but do not necessarily 
follow a uniform distribution (the distribution of [𝒙 ]  for 
DSS transmission will be derived shortly as it is needed for 
cdf). Therefore, it can be written from Equation (15) that 
 

Pr 𝛾DSS-FDE > 𝛾  = 1 −     Pr |[𝒙 ] | ≤ 𝛾 𝐸{|[𝒙 ] | }

  = 1 − Pr |[𝒙 ] | ≤ 𝛾 𝐸{|[𝒙 ] | }    (16)

 

 

where again the i.i.d. nature of [𝒙 ] , ∀𝑖, 𝑛, is utilized. 
 
To evaluate 𝐸{|[𝒙 ] | } , the probability distribution of 
[𝒙 ] , ∀𝑛, needs to be known, which will be derived from 
distribution of [𝑿 ] ∈ 𝒜 . In particular, to find the 
distributions of ℜ𝔢{[𝑿 ] }  and ℑ𝔪{[𝑿 ] } , where ℜ𝔢{. } 
and ℑ𝔪{. } are respectively the real and imaginary parts of 
the argument, notice that they are uniformly distributed 

between 
√

 and −
√

, so that their distribution is 

/√ /√
=

√
, the pdfs of ℜ𝔢{[𝒙 ] }, for 

large 𝑀, i.e., [6] 
 

𝑓ℜ𝔢{[𝑿 ] } = 𝑓ℑ𝔪{[𝑿 ] }

∼

1

√2𝐴
ℜ𝔢{[𝑿] } ≤

𝐴

√2
, ℑ𝔪{[𝑿] } ≤

𝐴

√2
0  otherwise 

            (17) 

 
To express [𝒙 ]  as a function of ℜ𝔢{[𝑿 ] } and ℑ𝔪{[𝑿 ] }, 
use the structure of matrix 𝝌 in the Equation (2), so that the 
𝑛th  entry of [𝒙 ]  can now be written as 
 

[𝒙 ] =   [𝝌] , [𝑿 ]                                                                                           

=

1

2
+ 𝑗

1

2
[𝑿 ] 𝑛 = 0 or 𝑛 =

𝑁

2
1

2
+ 𝑗

1

2
[𝑿 ] +

1

2
− 𝑗

1

2
[𝑿 ]  otherwise 

     (18) 

 
Then, after some simple modifications, the real and 
imaginary parts of [𝒙 ]  can be written respectively as 
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ℜ𝔢{[𝒙] ] }                                                                                                                   

=

1

2
(ℜ𝔢{[𝑿 ] } − ℑ𝔪{[𝑿 ] }) 𝑛 = 0 or 𝑛 =

𝑁

2
1

2
(ℜ𝔢{[𝑿 ] + [𝑿 ] } + ℑ𝔪{[𝑿 ] − [𝑿 ] })  otherwise 

 

                                                                                                                            (19) 
 
ℑ𝔪{[𝒙] ] }                                                                                                                  

=

1

2
(ℜ𝔢{[𝑿 ] } + ℑ𝔪{[𝑿 ] }) 𝑛 = 0 or 𝑛 =

𝑁

2
1

2
(ℜ𝔢{[𝑿 ] − [𝑿 ] } + ℑ𝔪{[𝑿 ] + [𝑿 ] })  otherwise 

 

                                                                                                                          (20) 
 
Since the pdf of sum of two mutually independent random 
variables 𝑈  and 𝑉 , with individual pdf's 𝑓 (𝑥) and 𝑓 (𝑥) 
respectively, is given as [15] 
 

                 𝑓 (𝑥) =   𝑓 (𝑥)𝑓 (𝑥 − 𝑦)𝑑𝑦                (21) 

 

the pdf's of both (ℜ𝔢{[𝑿 ] } ± ℑ𝔪{[𝑿 ] }), 𝑛 = 0 or 𝑛 =

, is given as 

 

𝑓
(ℜ𝔢{[𝑿 ] }±ℑ𝔪{[𝑿 ] })

(𝑥) ∼
1

2
⋅

1

√2𝐴
⋅

1

√2𝐴
 

√

√

 1𝑑𝑦

  ∼

1

2𝐴
ℜ𝔢{[𝑿] } ≤

𝐴

√2
, ℑ𝔪{[𝑿] } ≤

𝐴

√2
0  otherwise 

 

                                                                                                                            (22) 
 

Similarly, both ℜ𝔢{[𝑿 ] ± [𝑿 ] }  and ℑ𝔪{[𝑿 ] ±

[𝑿 ] }  are uniformly distributed between √2𝐴  and 0, 
therefore, 
 
𝑓

(ℜℜ{[𝑿 ] ±[𝑿 ] }) (ℑ𝔪{[𝑿 ] ±[𝑿 ] })
(𝑥) 

        ∼
1

2
⋅

1

√2𝐴
⋅

1

√2𝐴
∫ √

√

 1𝑑𝑦 

      ∼

1

2𝐴
      ℜ𝔢{[𝒔] } ≤

𝐴

√2
, ℑ𝔪{[𝒔] } ≤

𝐴

√2
0  otherwise 

,                     (23) 

 

which is identical to that of (ℜ𝔢{[𝑿 ] } ± ℑ𝔪{[𝑿 ] }) . 

Therefore, the pdf's of real and imaginary parts 𝑛th  element 
of DSS-DCE symbol, [𝒙 ]  can be written as, 
 
𝑓ℜ𝔢{[𝒙 ] } = 𝑓ℑ𝔪{[𝒙 ] }                                                                                                                 

∼

1

2𝐴
ℜ𝔢{[𝑿] } ≤

𝐴

√2
, ℑ𝔪{[𝑿] } ≤

𝐴

√2
0  otherwise 

.               (24) 

 
From the pdfs of real and imaginary parts can be combine 
into the pdf of [𝒙 ]  by 
 

𝑓[𝒙 ]  ∼
1

2
⋅

1

2𝐴
⋅

1

2𝐴
 

√

√

 1𝑑𝑦

  ∼

1

√2𝐴
ℜ𝔢{[𝑿] } ≤

𝐴

√2
, ℑ𝔪{[𝑿] } ≤

𝐴

√2
       (25)

0  otherwise 

 

 

Now returning to computation of 𝐸∥∥[𝒙 ] ∥∥ , let 𝑦 ≜
ℜ𝔢{[𝒙 ] } and 𝑧 ≜ ℑ𝔪{[𝒙 ] }, it can be written that, 
 

        𝐸∥∥[𝒙 ] ∥∥  =
1

√2𝐴
 

√

√

   
√

√

  (𝑦 + 𝑧 )𝑑𝑦𝑑𝑧

  =
1

2√2𝐴
 

√

√

 
𝐴

3√2
+ √2𝐴 𝑧 𝑑𝑧

  =
1

2√2𝐴
⋅

2𝐴

3

  =
1

3√2
𝐴 ⋅                                                        (26)

 

 
Therefore, the cdf of DSS-FDE can be written as, 
 

Pr 𝛾 > 𝛾 = 1 − Pr |[𝒙 ] | ≤ 𝛾
𝐴

3√2
.          (27) 

 
Figure 2 compares the cdf of OFDM, T-OFDM, SC-FDE 
and DSS-FDE systems at 𝑁 = 256 . The results are 
obtained over 1000 simulation runs. As can be seen the 
curves drop very sharply from 10  to 10  for SC-FDE and 
DSS-FDE at around 3 dB and 6 dB respectively. This can 
be interpreted as almost 100% probability the PAPR will 
below 3 or 6 dB respectively for DSS-FDE and DSS-FDE 
and highly unlikely that it will go beyond those points. 
 
4. Error Performance Analysis 
 

From Equation (32) in [1], which gives expression for 
the SNR on 𝑘th  subchannel of the GMC system with ZF 
equalization, the SNR on the 𝑘th  subchannel of DSS-FDE 
with ZF equalization can be obtained by putting 𝑸 = 𝝌, 
i.e., 
 

𝛽 ,                                                                                                         

= 𝛽 ⋅
∏     [𝑫] ,

∑     [𝝌𝑭ℋ] , ∏  ,   [𝑫] ,

         

       = 𝛽 ⋅
∏    [𝑫] ,

∑    [𝑯] , ∏  ,   [𝑫] ,

,                      (28) 

 
where 𝝌𝑭ℋ = 𝑭𝑯𝑭ℋ = 𝑯𝑭𝑭ℋ = 𝑯 has been used in the 
second equality. 
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Recall that 𝛽 =  is the additive white Gaussian noise 

(AWGN) channel SNR for a normalized modulation 
constellation. After dividing both numerator and 

denominator by ∏   [𝑫] , , the relationship between 
the ZF SNR of conventional OFDM and DSS-FDE can be 
found as 

                    𝛽 ,  =
1

∑    
[𝑯] ,

𝛽 [𝑫] ,

  =
1

∑    
[𝑯] ,

𝛽  , OFDM 

.                (29)

 

 
By definition, 
 

[𝑯] ,  =
1

𝑁
[𝑪] , + [𝑺] , [𝑪] , + [𝑺] ,

ℋ

  =
1

𝑁
cos  

2𝜋

𝑁
𝑘𝑛 + sin  

2𝜋

𝑁
𝑘𝑛 + 2cos 

2𝜋

𝑁
𝑘𝑛 sin 

2𝜋

𝑁
𝑘𝑛

  =
1

𝑁
1 + 2cos 

2𝜋

𝑁
𝑘𝑛 sin 

2𝜋

𝑁
𝑘𝑛

  =
1

𝑁
1 + sin 2

2𝜋

𝑁
𝑘𝑛 ,                                                          (30)

 

 
where in third equality in (30) the identity cos  𝛼 +
sin  𝛼 = 1  and in last equality, expression 

cos (𝛼)sin (𝛽) = sin (𝛼 + 𝛽) have been used [16]. 

 

Since sin 2 𝑘𝑛  does not have a constant envelope, 

[𝑯] , | ≠ |[𝑯] ,  for 𝑘 ≠ 𝑘 , 𝑛 ≠ 𝑛 , which leads to 

the observation that the ZF equalized SNR on all the 
subchannels of DSS-FDE are not the same. For comparison, 
that it is same for all subchannels of SC-FDE [17]. However, 
the SNR distribution for different subchannels of DSS-FDE 
is still not completely random. To see this, use the value of 

[𝑯] ,  from Equation (30) in Equation (28) to get 
 

   𝛽 ,  =
1

1
𝑁

∑    
1 + sin 2

2𝜋
𝑁

𝑘𝑛

𝛽 [𝑫] ,

  =
1

1
𝑁

∑    
1

𝛽 [𝑫] ,

+
1
𝑁

∑    
sin 2

2𝜋
𝑁

𝑘𝑛

𝛽 [𝑫] ,

         (31)

 

 
From Equation (34) in [1], it can be seen that the first 
summation in the denominator of Equation (31) is 
1/𝛽ZF, SC-FDE . Furthermore, define 
 

                𝜇 ≜
1

𝑁
 

1

[𝑫] ,

sin 2
2𝜋

𝑁
𝑘𝑛                (32) 

 
After substituting the value of 𝜇  in Equation (31), 
 

   
𝛽 , =

1

1
𝛽 ,

+
𝜇
𝛽

=
𝛽 𝛽 ,

𝛽 + 𝜇 𝛽 ,
        (33)

                 

 

 
Figure 2: The CDF of PAPR of different system at 𝑁 = 256 

 
It is important to notice here that, since the 𝜇  involves 

weighted average of all subchannel responses, [𝑫] , , ∀𝑛, 
the dependence of 𝜇  on the channel response matrix 𝑫 is 
the same for all 𝑘 and any variation in 𝜇  is the result of 
variation in the sinusoidal terms that depend on 𝑘 . 
Therefore, Equation (33) suggests that the relationship 
between the SNRs on the 𝑘th  and 𝑘  th  subchannel is 
strictly the function of 𝑘  and 𝑘  regardless of channel 
conditions. This can be compared with the the SC-FDE, 
which has the same SNR on all subchannels regardless of 
the channel conditions for each subchannel and hence 
precoding with FFT is referred to as channel independent 
precoding [18]. While the SNR on the 𝑘th  subchannels of 
DSS-FDE is not the same for all 𝑘, it is still independent of 
channel conditions on 𝑘th  subchannel, [𝑫] , , so that 
precoding with DHT is also channel indepdent precoding. 
The authors in [5] suggest channel independent precoding 
is achieved when, for an 𝑁 × 𝑁  precoding matrix 𝑼 , 

[𝑼] , =
√

 for all 𝑢, 𝑣 . Although [𝑯] , ≠
√

, ∀𝑢, 𝑣 , 

the DHT matrix, 𝑯, is still a channel independent precoding. 
 

To elaborate this idea further, refer to Equation (33), 
which not only shows the relationship between SNRs of SC-
FDE and DSS-FDE on the 𝑘th  subchannel when ZF 
equalization is used, it also provides some interesting 
insights into DSS-FDE system performance, as will be seen 
shortly. The SNR comparison between SC-FDE and DSS-
FDE is dictated by the parameter 𝜇  and therefore, by 𝑘. In 
particular, 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.9, September 2024 
 

 

47 

 

             𝛽 ,

> 𝛽 ,  if 𝜇 < 0

= 𝛽 ,  if 𝜇 = 0

< 𝛽 ,  if 𝜇 > 0

             (34) 

Using a numerical exercise for any realization of diagonal 
channel response matrix, 𝑫, over all 0 ≤ 𝑘 ≤ 𝑁 − 1, it can 
be easily checked that, when 𝑁 ≥ 4 , for every 𝜇  there 
exists a unique 𝜇  such that 𝜇 + 𝜇 = 0, ∀𝑘 ≠ 𝑘 , 
because 

              

 𝜇 = 0 = −𝜇   for  0 ≤ 𝑝 ≤
𝑁

4
− 1

 𝜇  = −𝜇   for  1 ≤ 𝑝 ≤
𝑁

4
− 1

 𝜇 = −𝜇   for  1 ≤ 𝑝 ≤
𝑁

4
− 1

            (35) 

 
By using the observations in Equation (34) in Equation (33), 
it can be shown that, for every 𝑘 for which 𝛽 , −

𝛽 , = Δ , there exists a unique 𝑘  such that 

𝛽 , − 𝛽 , = −Δ. Thus, on 𝑘  subchannel, 
if the SNR of SC-FDE is higher than DSS-FDE by a certain 
margin Δ, then there necessarily exists 𝑘  such that the SNR 
of DSS-FDE on 𝑘  th subchannel is higher than SC-FDE by 
same Δ. This observation can be formalized as follows: 
 
Observation 1: 
 
1) In given channel conditions, the average SNR of a 

DSS-FDE symbol is same as that of SC-FDE, i.e., 

                          
1

𝑁
  𝛽 , = 𝛽 ,            (36) 

and since error performance is average of all 
subchannels, both systems have same performance (see 
simulation graphs in Figure 3). Notice that average is 
taken over subchannels within a symbol, not over more 
than one symbols. 

2) Conventional OFDM is known to suffer BER loss 
compared to SC-FDE in frequency selective channels 
due to deeply faded low SNR subcarriers, however, 
unlike DSS-FDE, there isn't necessarily a 
correspondingly high SNR subcarrier to average out 
the BER loss. 

3) Furthermore, it has been suggested in the literature (see 
[5], discussion after Theorem 1) that precoding 

matrices, 𝑼 , for which [𝑼] , =
√

, ∀𝑢, 𝑣 , are 

channel independent and hence optimal precoders in 
terms of BER performance. From the analysis in this 
section, it has been shown that, while there exist 𝑢 and 

𝑣  for which [𝑯] , ≠ , the matrix 𝑯  is still a 

channel independent precoder and DSS-FDE matches 
error performance SC-FDE. 
 

Figure 3 shows simulation results to compare the BER 
performance of DSS-FDE with SC-FDE, T-OFDM and the 
conventional OFDM. In all simulations, all transforms have 
dimension of 𝑁 = 256 and 16-QAM modulated symbols 
are transmitted across a Rayleigh fading channel which is 
modeled by a Stanford University Interim (SUI)-5 [19] type 
three-path channel with propagation delays and fading 
margins of [0 4 10]𝜇𝑠 and [0 − 5 − 10]dB respectively. 

 
 

Figure 3: The BER performance comparison of different systems 
 

The channel response is assumed to remain constant 
for the duration of one MC symbol and the BER graphs 
were averaged over 1000 simulations runs. As can be seen, 
the DHT precoded system, T-OFDM and SC-FDE offer 
substantial BER performance gain over conventional 
OFDM. Specifically, at a BER of 10 , approximately 
7 dB gain is observed for these otherwise uncoded systems. 
 
5. Timing Synchronisation Performance 
 

In Theorem 2 of the [1], the conditions over GMC 
system based upon generalized 𝑸 ∣ 𝑸  transform pair, 
which would lead to identical performance to that of 
conventional OFDM due to timing error, 𝜁, when it holds 
the bound 𝐿 − 𝐿 ≤ 𝜁 ≤ 0 were identified in and these are: 
a) 𝑸  is 𝑁-periodic and [𝑸] , = 𝑔 𝐾 , [𝑸] , , where 

𝐾  is independent of 𝑣 but same for all entries of 𝑢th  
row, and 𝑔(⋅,⋅) is an arithmetic operation between the 
arguments, or 

b) the 𝑸  itself does not satisfy condition (a) but it can be 
expressed as 𝑸 = �̃� 𝚿, where �̃�  satisfies condition 
(a) and 𝚿 is 𝑁-periodic. 
 

To see the applicability of this theorem to the transform 
matrix 𝝌 = 𝑯𝑭, first it should be checked if 𝜒 is periodic. 
It was shown in [1] Lemma 2, that product of two 𝑁 -
periodic matrices is also 𝑁 -periodic. The matrix 𝑭  is 
already well-known to be 𝑁 -periodic. To check the 
periodicity of 𝑯, its (𝑢, 𝑣)th  entry is given as 
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[𝑯] ,  =
1

√𝑁
cos 

2𝜋

𝑁
𝑢𝑣 + sin 

2𝜋

𝑁
𝑢𝑣

  ⇒ [𝑯] ,  =
1

√𝑁
cos 

2𝜋

𝑁
𝑢(𝑣 + 𝑝𝑁) + sin 

2𝜋

𝑁
𝑢(𝑣 + 𝑝𝑁)

  =
1

√𝑁
cos 

2𝜋

𝑁
𝑢𝑣 + 2𝜋𝑝𝑢 + sin 

2𝜋

𝑁
𝑢𝑣 + 2𝜋𝑝𝑣

  = [𝑯] , .                                                                                 (37)

 

 
Using similar method, it can be shown that [𝑯] , =

[𝑯] , , so it can be said that 𝑯 is 𝑁-periodic. Since 𝑯 is 
periodic and the product of 𝑯 and 𝑭 is commutative, i.e., 
𝝌 = 𝑯𝑭 =  𝑭𝑯  (see Section 2), by letting 𝑸 = 𝑭 , the 
matrix 𝝌  satisfies the part (b) of theorem because 𝑭 
satisfies part (𝒂). Therefore, DSS-FDE system will incur 
only a phase offset when the timing error is in range 𝐿 −
𝐿 ≤ 𝜁 ≤ 0, regardless of whether FDE or HDE equalization 
is used. This should be compared with T-OFDM, where it 
was seen that since 𝑾𝑭 ≠ 𝑭𝑾, there will be interference 
whenever 𝑇-transform is implemented at receiver as one 
transform and 𝜁 ≠ 0. Thus, DSS-FDE is less sensitive to 
timing errors than dyadic convolution-based T-OFDM [20]. 
 
 
6. Complexity Comparison of DSS-FDE and 

SC-FDE 
 

When time domain signal generation is used, the SC-
FDE transmitter does not need to compute any transforms 
and hence it only uses CP insertion. In case of DSS-FDE, a 
total of 𝑁 − 2 additions and 𝑁 − 2 multiplications will be 
needed to execute 𝜒ℋ -transform. At the receiver, both 
systems compute two transforms of the same complexity, 
𝑁log 𝑁  additions and multiplications and single tap 
equalization of 𝑁 multiplications. Thus, baseband SC-FDE 
has a total 𝑁 + 𝑁log 𝑁  multiplications and 𝑁log 𝑁 
additions in comparison to DSS-FDE, which has 2𝑁 − 2 +
𝑁log 𝑁  multiplications and 𝑁 − 2 + 𝑁log  𝑁  additions. 
Therefore, DSS-FDE has slightly higher complexity for 
time domain signal generation. 
 

However, it has been suggested in, for example [21], 
that frequency domain signal generation, although 
equivalent, is more bandwidth efficient due to improved 
filtering in the frequency domain. This comes at the cost of 
performing both transforms at the transmitter as well. The 
long-term evolution (LTE) standard allows both time 
domain and frequency domain methods of signal generation 
[22]. In frequency domain signal generation, the complexity 
of two systems will be identical.  
 
 
 
 

7. Conclusions 
 

This paper studied the DSS-FDE system in detail, as 
well explored the structure of the 𝜒-transform matrix, and 
resulting implication on PAPR and computation complexity. 
It was shown analytically that DSS-FDE has twice the 
PAPR of single carrier system but still half that of 
conventional OFDM. Furthermore, the paper showed that, 
much like conventional OFDM, when timing 
synchronization is less than the length of cyclic prefix, the 
DSS-FDE system does not incur any BER performance 
penalty. The SNR on the given subchannel was also studied, 
along the ability of DSS-FDE system to harvest channel 
diversity and achieve full coding gain. These were also 
corroborated with simulation results. 
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