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Abstract 
Precoding of the orthogonal frequency division multiplexing 
(OFDM) with Walsh Hadamard transform (WHT) is known in the 
literature. Instead of performing WHT precoding and inverse 
discrete Fourier transform separately, a product of two matrix can 
yield a new matrix that can be applied with lower complexity. This 
resultant transform, T-transform, results in T-OFDM. This paper 
extends the limited existing work on T-OFDM significantly by 
presenting detailed account of its computational complexity, a 
lower complexity receiver design, an expression for PAPR and its 
cumulative distribution function (cdf), sensitivity of T-OFDM to 
timing synchronization errors, and novel analytical expressions 
signal to noise ratio (SNR) for multiple equalization techniques. 
Simulation results are presented to show significant improvements 
in PAPR performance, as well improvement in bit error rate (BER) 
in Rayleigh fading channel. This paper is Part II of a three-paper 
series on alternative transforms and many of the concepts and 
result refer to and stem from results in generalized multicarrier 
communication (GMC) system presented in Part I of this series. 
Keywords: 
Walsh Hadamard, OFDM, PAPR, T-OFDM 
 

 

1.  Introduction 
 
        The conventional orthogonal frequency division 
multiplexing (OFDM), a multicarrier communication (MC) 
system is the choice of modulation in many communication 
standards [1], [2]. The conventional OFDM uses a discrete 
Fourier transform (DFT) pair at transmitter and receiver, 
coupled with cyclic prefix (CP) insertion, such that transfer 
matrix of multipath fading channel becomes circulant, 
whose eigenvectors are inverse and forward DFT matrices, 
thereby diagonalizing it and resulting in a single-tap 
equalization. The OFDM also offers benefits from better 
spectral efficiency due to partially overlapping and still 
orthogonal subcarriers [3] and lower sensitivity to timing 
synchronization errors [4]. However, it suffers significant 
challenges in its inability to harvest channel diversity [5], 
unlike its predecessor single carrier systems, as well as high 
peak to average power ratio [6] and sensitivity to carrier 
frequency offset (CFO) [7].  
 
        To address these drawbacks, myriad approaches have 
been employed in the literature, including some form of 

precoding [8], channel coding [9], pilot signal [10], amongst 
others. Use of alternative transform is one these techniques, 
although a less popular one. For example, real valued 
trigonometric transform was used in OFDM in [11], which 
had an advantage in situation when channel delay spread is 
longer than cyclic prefix but disadvantage of being real 
value, so unable to use complex two-dimensional alphabets 
for modulation, thereby compromising on overall spectral 
efficiency. A similar real value discrete Hartley transform 
(DHT) based OFDM was proposed in [12] and [13]. 
  

Precoding conventional OFDM with WHT matrix has 
appeared in the literature, in for example, [14] and [15], 
which demonstrate improvement in PAPR and [16] shows 
improvement in BER performance using simulation results 
and [15] and [16] presents and iterative minimum mean 
square error (MMSE) is presented in [17]. The idea of 
combining WHT and DFT transforms into T-transform was 
first published in [14] showing lower computational 
complexity. However, since T-transform cannot 
diagonalize the channel matrix (see [18], Theorem 3), a 
Hadamard domain equalization using dyadic convolution 
was proposed in [19] with a computational complexity of 
𝑂(𝑁 ) , where 𝑁  is the number of subcarriers. A lower 
complexity receiver was designed in [15], where the 
transmitter and receiver side transform were splits, with 
equalization in between, thereby increasing transform 
complexity but reducing equalization complexity 
significantly so that overall complexity is reduced. This 
paper extends the work in T-OFDM significantly by making 
several contributions described below. 
 
A. Contributions of this Paper 
 
Following are the contributions of this paper. 
 

a) Expression for diversity order attained by T-OFDM is 
derived, showing its ability to harvest full channel 
diversity. 

b) An expression is derived for the coding gain attained 
by T-OFDM is also derived. 

c) An expression for per subcarrier SNR for ZF equalizer 
is derived for T-OFDM 
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d) An expression for per subcarrier signal to noise plus 
interference (SINR) is derived for each subchannel 
with MMSE receiver. 

e) It demonstrated both analytically and simulation results 
that, unlike conventional OFDM, the T-OFDM suffers 
from greater penalty due to the timing synchronization 
errors. 
The remainder of this paper is organized as follows. In 

Section 2, T-OFDM signal model is presented, along with 
various receiver designs, their equivalency and improved 
BER performance, and the T-transform structure and 
complexity are presented. The analysis of PAPR is carried 
out in Section 3, where Section 4 focuses on error 
performance, including detail analysis for ZF and MMSE 
receivers. Section 5 focuses on timing synchronization 
errors, while Section 6 concludes this paper. 
 
2. The T-OFDM System 
 

The block diagram of T-OFDM system is given in 
Figure 1. The T-OFDM system is based upon the T-
transform pair, such that it is a special case of generalized 
multicarrier communication (GMC) system introduced in 
Part I [18] of this three-paper series, with 𝑸 = 𝑻ℋ, where 
 
                         𝑻ℋ  ≜ 𝑭ℋ𝑾ℋ = 𝑭ℋ𝑾             (∵ 𝑾ℋ = 𝑾),

𝑻 ≜ 𝑾𝑭 = 𝑾ℋ𝑭,                                       (1)
 

 
where 𝑾 is the Walsh-Hadamard transform (WHT) matrix, 

such that its (𝑢, 𝑣)th  entry is  [𝑾] , =
√

∏  (−1) , , 

where 𝑢  and 𝑣  are the 𝑖th  bits of the binary representation 
of 𝑢 and 𝑣 respectively and 𝑐 = log  𝑁. 
 

The transmitter of the system utilizes the inverse 𝑇-
transform and cyclic prefix (CP) insertion, so that the 𝑖th  
transmitted symbol is given as 𝒙 = 𝚵 𝑻ℋ𝑿, where 𝚵  is 
the CP insertion matrix. The channel matrix becomes 
circulant because of the use of CP  so that the received 
vector after the CP removal is given as, 
 
                                   𝒚 = 𝑯 𝑻ℋ𝑿 + 𝜼.                                 (2) 
 

Three different receiver configurations for T-OFDM 
are shown in Figure 1. The receiver configuration in 1(𝑏), 
hereafter referred to as dyadic convolution receiver, was the 
proposed receiver of T-OFDM in the original work of [16]. 
In the dyadic convolution receiver, the 𝑇 -transform is 
implemented first at the receiver, to get, 
 
                        𝒀 = 𝑻𝑯 𝑻ℋ𝑿 + 𝑻𝜼

 = 𝑾𝑭𝑯 𝑭ℋ𝑾𝑿 + 𝑾𝒘     (recall 𝒘 ≜ 𝑭𝜼)

  = 𝑾𝑫𝑾𝑿 + 𝑾𝒘                                       (3)

 

 

where 𝑫 = 𝑭𝑯 𝑭ℋ  has been used. The matrix 𝑾𝑫 is not 
diagonal, so single-tap equalization is not possible. 

 
(a) Transmitter 

 
(b) Dyadic equalization receiver 

 
(c) Two WHTs with single-tap equalization receiver 

 
(d) Single tap equalization receiver 

 
Figure 1: Block diagrams of T-OFDM system with different 

receiver configurations 
 
It has been shown in [20] that, if 𝒂 and 𝒃 are two vectors 
such that 𝑨 ≜ 𝑾𝒂 and 𝑩 ≜ 𝑾𝒃, then 
 

                         [𝑨] [𝑩] =   [𝒂] ⊕ [𝒃] ,                      (4) 

 
where the binary operation {⋅} ⊕ {⋅} involves the processes 
of converting both integer argument to binary numbers, 
performing exclusive-OR operation between the two binary 
streams and converting the result back into decimal number. 
The right-hand side of Equation (4) is called logical or 
dyadic convolution, such that the Equation (4) represents 
the logical convolution theorem, stated as the element-wise 
product of two WHT transformed sequences is their logical 
(or dyadic) convolution [20]. 
 

Therefore, in Equation (3), it can be seen that the right-
hand side is the product of two WHT transformed sequences, 
namely, 𝑿  and diag {𝑫} , plus the WHT of noise vector, 
where diag {⋅} is the operation of the vector representation 
of the diagonal of the matrix in the argument. Therefore, 
after defining 𝒅 ≜ diag {𝑫}, 𝑿 ≜ 𝑾𝑿 , the 𝑘th  entry of 
pre-equalization vector, 𝒀, can be written as 
 

          [𝒀] =   [𝒅] ⊕ [𝑿 ] +   [𝑾] , [𝒘]          (5) 
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The authors in [16] propose per-subchannel equalization in 
Hadamard domain using the equalization matrices 
traditionally used for conventional OFDM. In particular, let 
[𝛀 ] , = [𝑫 ] ,  be the (𝑢, 𝑢)th  entry of diagonal ZF 
equalization matrix, then, after defining 𝑩 ≜ 𝑾diag 𝛀 , 
the equalization can be also be performed directly by dyadic 
convolution. In such case, the estimate of the 𝑘th  entry of 
the transmitted vector can be written as 
 

          [�̂�]  =     [𝑩] ⊕ [𝒀]  = [𝑿] + [�̃�]                 (6)

  

 

 
where [�̃�]  is the noise vector and there is no intercarrier 
interference (ICI) term because 𝛀  is a diagonal matrix. 
 

The dyadic convolution receiver has a relatively high 
computational complexity of 𝒪(𝑁 ) [20] and the advantage 
measured in terms reduced complexity due to 𝑇-transform 
pair (to be discussed shortly in Subsection 2.1) is far 
outweighed by the complexity increase due to dyadic 
convolution. 
 
Figure 1( 𝒄 ) shows a different receiver configuration where 
𝑇-transform is followed by WHT transforms with single-tap 
equalization in between them. In this case, the the estimate 
of the transmitted T-OFDM vector is given as 
 
                      �̂� = 𝑾𝛀 𝑾𝑾𝑫𝑾𝑿 + 𝑾𝛀 𝑾𝑾𝒘

  = 𝑿 + 𝑾𝛀 𝒘                                              (7)
 

 
The receiver configuration proposed in this paper, 
illustrated in Figure 1 (d), decomposes the 𝑇 -transform 
matrix into FFT and WHT transforms, with the equalization 
performed in between them. In particular, after the FFT 
transform, the received vector is given as 
 
                                𝒀 = 𝑭𝑯 𝑻ℋ𝑿 + 𝑭𝜼

  = 𝑭𝑯 𝑭ℋ𝑾𝑿 + 𝑭𝜼
  = 𝑫𝑾𝑿 + 𝒘                                          (8)

 

 
where in the last equality 𝑫 = 𝑭𝑯 𝑭ℋ  has been used. 
Equalization is then performed by pre-multiplying 𝒀 with 
diagonal matrix 𝛀 , which is followed by WHT transform 
to obtain the estimate of the transmitted vector, i.e., 
 
                                �̂� = 𝑾𝛀 𝑫𝑾𝑿 + 𝑾𝛀 𝒘

  = 𝑿 + 𝑾𝛀 𝒘                                   (9)
 

 
Equations (6), (7) and (9) show an estimate of transmitted 
vector 𝑿  for different receiver configurations given in 
Figure 1(𝒃), (𝒄)  and (𝒅) , respectively. The simulation 

example below verifies that the three approaches of 
receiver-side processing of the T-OFDM have the same bit  
 

 
Figure 2: BER comparison of conventional OFDM with the three 

approaches of T-OFDM receiver shown in Figure 1, with ZF 
equalization, i.e., 𝛀 = 𝑫 . 

 
error rate (BER) performance, so that they differ only in 
their receiver side computational complexity. Figure 2 
shows the simulation result to compare the BER 
performance of the conventional OFDM with three 
different approaches of T-OFDM receiver described above. 
As expected, the error performance is identical for the T-
OFDM systems and significantly better than the 
conventional OFDM.  
 

For example, at the BER of 10 , the performance 
gain of T-OFDM is about 7 dB . In all simulations, the 
transform length of 𝑁 = 256 is used, 16-QAM modulated 
symbols are transmitted across a Rayleigh fading channel 
which is modeled by a Stanford University Interim (SUI)-5 
[21] type three-path channel with propagation delays and 
fading margins of [0 4 10]𝜇𝑠 and [0 −5 −10] dB 
respectively. The channel response is assumed to remain 
constant for the duration of one MC symbol and the BER 
graphs were averaged over 1000 simulations runs. 
 
2.1 The T-transform 
 

A detailed discussion on the implementation of 𝑇 -
transform can be found in [22], where the 𝑇 -transform 
matrix is decomposed into several sparse matrices and a 
butterfly 
structure is proposed to implement the transform at low 
complexity. In particular, it shown that the total number of 
real additions and multiplications are respectively 
 

                 
𝑅Mults  = 2[𝑁log  (𝑁) − (2𝑁 − 2)]

𝑅Adds  = 4[𝑁 log (𝑁) − (2𝑁 − 2)],                 (10)
 

 
whereas, in comparison, to implement the inverse DFT and 
WHT separately, the total number of real multiplications 
and additions are respectively 
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                                𝑅Mults  = 2[𝑁log  (𝑁)]

𝑅Adds  = 5[𝑁 log (𝑁)].                        (11)
 

 
It is difficult to find the expression for (𝑢, 𝑣)th  entry of 𝑻ℋ 
because the (𝑢, 𝑣)th  entry of 𝑾  depends on binary 
representation of 𝑢 and 𝑣. However, a few properties of its 
structure can be derived here. It is well known that the sum 
of entries of the first row as well the first column of 𝑭ℋ  is 
√𝑁 and the sum of entries of all other rows or columns is 0. 
Exactly same is true for 𝑾, i.e., 
 

            [𝑭ℋ] , =     [𝑭ℋ] , = √𝑁 𝑢, 𝑣 = 0
0 𝑢, 𝑣 ≠ 0

      [𝑾] , =     [𝑾] , = √𝑁 𝑢, 𝑣 = 0
0 𝑢, 𝑣 ≠ 0

         (12)

 

 
However, when 𝑭ℋ  and 𝑾  are multiplied, the sum of 
entries of all rows as well as all columns of resultant matrix 
is unity. In particular, the following property of the 𝑇 -
transform is proved here. 
 
Lemma 1. The sum of entries of every row as well as every 
column of 𝑻ℋ is unity, i.e., 
 

              [𝑻ℋ] , =   [𝑻ℋ] , = 1,  ∀ 𝑢, 𝑣             (13) 

 
Proof. The sum of the 𝑢th  row of 𝑻ℋ can be computed as 

    [𝑻ℋ] ,  =         [𝑭ℋ] , [𝑾] ,

  =    [𝑭ℋ] ,     [𝑾] ,

 

                                         = [𝑭ℋ] ,     [𝑾] ,

  =
1

√𝑁
√𝑁 = 1                               (14)

 

 
where last equality in (14) is obtained by noting that, for any 
given 𝑢, the entries of 𝑭ℋ  repeat over 𝑘 for every 𝑣, so that 
the entries of 𝑭ℋ  can be taken outside of inner summation. 
Then, the third equality follows because ∑  [𝑾] , = √𝑁 
and ∑  [𝑾] , = 0 for 𝑣 ≠ 0, so that all terms of outer 

summation are 0 except when 𝑣 = 0 and [𝑭ℋ] , =
√

 has 

been used in the last equality. 
 

Using the same reasoning, the sum of 𝑢th  column of 𝑻ℋ  
can be shown to be equal to unity by 
 

                      [𝑻ℋ] ,  =         [𝑭ℋ] , [𝑾] ,

  =     [𝑾] ,     [𝑭ℋ] ,

  = [𝑾] ,     [𝑭ℋ] ,

  =
1

√𝑁
√𝑁 = 1,                              (15)

 

where ∑  [𝑭ℋ] , = √𝑁, ∑  [𝑭ℋ] , = 0  for 𝑢 ≠ 0 

and [𝑾] , =
√

 have been used. This concludes the proof 

of Lemma1.
 
3. PAPR of T-OFDM 
 

The PAPR expression for the T-OFDM can be 
obtained from [18] (see Theorem 1) in Part I, by substituting 
𝑸 = 𝑻ℋ , so that 
 

          𝛾 =
𝐴

2
max      𝑔[𝑻ℋ] ,         (16) 

 
where 𝑔 ∈ {±1 ± 𝑗}. 
 
The PAPR expression in Equation (16) requires [𝑻ℋ] , , 
which is difficult to obtain because [𝑾] ,  is a function of 
binary representation of 𝑢 and 𝑣. Therefore, computation of 
a closed-form expression for the PAPR of T-OFDM seems 
infeasible. 
 
Numerically, the PAPR can be computed for T-OFDM for 
various 𝑁. In particular, Equation (16) was calculated at 
various 𝑁  and averaged over 10  T-OFDM symbols and 
the result is summarized in the Table 1. 
 

           𝛾  OFDM =
max   max {|[𝚵 𝑻ℋ𝑿 ] | }

1
𝑁 + 𝐿 ∥∥𝚵 𝑻ℋ𝑿 ∥∥

.            (17) 

 
The table shows the PAPR of T-OFDM at various values of 
𝑁 expressed as a number times the 𝐴 , the PAPR of the 
constellation alphabet, 𝒜. However, these results may be 
significantly different from the actual theoretical PAPR of 
T-OFDM because the likelihood that the PAPR of a 
particular T-OFDM symbol is equal to the theoretical 
maximum is very small. 
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Transform 
size, 𝑁 

PAPR 
PAPR (in dB) for 

𝐴 = 1.8 

64 6.19𝐴  10.4696 

128 6.73𝐴  10.8329 

256 7.30𝐴  11.1860 

512 7.62𝐴  11.3723 

1024 7.90𝐴  11.5290 

 
Table 1: Numerical value of the PAPR of T-OFDM at various values of 

𝑁 for normalized QAM constellation of size 𝑀 = 16, so that 𝐴 = 1.8. 
 

 
Figure 3: Graphs showing the probability that T-OFDM and the 
conventional OFDM will cross a given threshold level of PAPR. 

 
To get a better insight into the PAPR of T-OFDM, Figure 3 
compares the cumulative distribution functions (cdf) of the 
PAPRs of the conventional OFDM and T-OFDM. The two 
curves run approximately parallel until the threshold PAPR 
of 12 − 13 dB . However, the theoretical PAPR of the 
conventional OFDM is 𝑁𝐴 , so that if the two curves 
kept going in parallel, the PAPR of T-OFDM could also be 
large; it appeared relatively lower in Table 1 because of the 
statistical likelihood of a theoretical peak occurring is very 
small. 
 
 
4. Error Performance 
 

In this section, the performance of T-OFDM will be 
evaluated using three different performance metrics, 
namely, the SNR on the 𝑘th  subchannel, the coding gain 
and diversity order. 
 
 
 

4.1 Diversity Order and Coding Gain 
 

For an excellent work on the concepts of diversity 
order and coding gain for conventional OFDM, reader is 
directed to [23]. Here, these derivations will be carried out 
in detail for T-OFDM. For the sake of simplicity, the 
analysis is carried out here for the receiver configuration 
shown in Figure 1(b). However, the results do apply to the 
dyadic convolution receiver configuration as well because 
of the equivalence of the two systems. 
 

Let 𝒀 ≜ 𝑭𝑯 𝑻ℋ𝑿  denote the received vector when 
the symbol 𝑿  is correctly recovered and �̃� ≜ 𝑭𝑯 𝑻ℋ�̃� 
denote the case when the 𝑿 is incorrectly received as �̃�, 
with 𝒆 ≜ 𝑿 − �̃� ≠ 𝟎 ×  being the error vector. Then, the 
upper bound on the pairwise error probability (PEP) is given 
as [5] 
 

                  𝑃 𝑿 → �̃� ∣∣ 𝒉 ≤ exp
−𝑑 𝒀, �̃�

4𝑁
             (18) 

 
where 𝑑(𝒀, �̃�) =∥ 𝒀 − �̃� ∥  is the Euclidean distance 
between the two vectors, which is, 
 

∥ 𝒀 − �̃� ∥ = ∥∥𝑭𝑯 𝑻ℋ𝑿 − 𝑭𝑯 𝑻ℋ�̃�∥∥

  = ∥∥𝑭𝑯 𝑭ℋ𝑾𝑿 − 𝑭𝑯 𝑭ℋ𝑾�̃�∥∥

  =∥ 𝑫𝑾(𝑿 − �̃�) ∥

  = ∥∥Diag {𝑽 𝒉}𝑫 ∥∥,

 

                                 = ∥∥𝑫 𝑽 𝒉∥∥                                          (19) 
 
where, in fourth equality in Equation (18), 𝑽  is an 𝑁 × 𝐿 

sized matrix with [𝑽 ] , = 𝑒 , i.e., the last 𝑁 − 𝐿 

columns of √𝑁𝑭  are truncated, so that 𝑫 ≜ Diag {𝑽 𝒉} 
and 𝑫 ≜  𝑾(𝑿 − �̃�) = 𝑾𝒆 . The last equality in (18) 
follows after forming diagonal matrix from 𝑫  by 𝑫 ≜
Diag {𝑫 }  and bringing it in the front and writing the 
diagonal of Diag {𝑽 𝒉} as vector at the end. 
 
The square of the Euclidean distance can then be written as 
 
       𝑑 (𝒀 − �̃�) = ∥∥𝑫 𝑽 𝒉∥∥ = (𝑫 𝑽 𝒉)ℋ(𝑫 𝑽 𝒉)

  = 𝒉ℋ𝑽ℋ𝑫ℋ𝑫 𝑽 𝒉

  = 𝒉ℋ𝑨 𝒉,                                                   (20)

 

 
where 𝑨 ≜ 𝑽ℋ𝑫ℋ𝑫 𝑽 . Then an upper bound on the PEP 
is given as [5] 
 

          𝑃 𝑿 → �̃� ∣∣ 𝒉 ≤
1

4𝑁
   𝜆 ,        (21) 
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where 𝑟  is the rank of matrix 𝑨  and 𝜆 , > 0 are the non-
decreasing eigenvalues of 𝑨 . 
 
Using the reasoning in [5], the diversity order and coding 
gain of T-OFDM can be obtained as functions of matrix 𝑨  
and are given respectively by 
 

                     

  𝐺  ≜ min  
𝒆 𝟎

 rank (𝑨 )

𝐺  ≜ min
𝒆 𝟎

     𝜆 ,

/

  = min
𝒆 𝟎

 det(𝑨 )                                      (22)

 

 
where the last equality in Equation (22) follows because the 
product of eigenvalues of a matrix is equal to its 
determinant. 
 
4.1.1 T-OFDM Diversity Order 
 

Equations (21) and (22) suggest that the error 
performance of T-OFDM will improve as the rank and 
determinant of 𝑨  increase. It is possible to further evaluate 
these expressions and show that T-OFDM has the maximum 
possible coding gain and diversity order. In particular, since 
the order of matrix 𝑽  is 𝑁 × 𝐿, the order of 𝑨  is 𝐿 × 𝐿, so 
that the maximum diversity order achievable is also 𝐿.  
 
Furthermore, since the matrix 𝑨 = (𝑫 𝑽 )ℋ𝑫 𝑽  is a 
Gram matrix (the Gram matrix of 𝑿 is given by 𝑿𝑿ℋ , with 
rank (𝑿) = rank (𝑿𝑿ℋ), see, for example, 46]), it can be 
said that 
 
                 𝑟  = rank (𝑨 ) = rank ((𝑫 𝑽 )ℋ𝑫 𝑽 )

  = rank (𝑫 𝑽 )

  = rank(Diag{𝑾𝒆} 𝑽 ).                                  (23)

 

 
Now, for two complex matrices 𝑨 and 𝑩, if matrix 𝑨 is a 
full rank and 𝑩 is conformable for the product 𝑨𝑩, then 
rank (𝑨𝑩) = rank (𝑩)  (see [24]). Matrix 𝑽  is by 
definition full rank, i.e., rank (𝑽 ) = 𝐿. Thus, to show that 
𝑨  is full rank, it should be shown that 
rank (Diag {𝑾𝒆}) ≥ 𝐿 , which in turn requires it to be 
shown that it has at least 𝐿 non-zero entries on its diagonal 
because it is a diagonal matrix. 
 

Consider first the case when 𝒆 has only one non-zero 
entry at the 𝑘th  position and denote it with 𝒆 , 𝒆 ≜
[𝟎 , 𝑔 𝟎 , ]𝒯 , 𝑔 ∈ ℂ, 𝑔 ≠ 0, then it can be seen 
that [Diag {𝑾𝒆 }] , = 𝑔[𝑾] , ≠ 0, ∀𝑛, by the definition 
of 𝑔 and 𝑾, so that rank (Diag {𝑾𝒆 }) = 𝑁. 
 

To generalize it for any 𝒆 with 1 ≤ 𝐾 ≤ 𝑁 non-zero entries, 
it can be seen that 
 
                         [Diag {𝑾𝒆 }] , = [𝑾] ,, 𝒆                      (24) 
 
i.e., the inner product of 𝑢th  row of 𝑾 and 𝒆. For a given 
combination of entries in 𝒆, this product cannot be 0 for 
more than one rows because the rows of 𝑾 are orthogonal. 
Therefore, rank (Diag {𝑾𝒆 }) ≥ 𝐿 for every 𝒆. Thus, 𝑟 =
𝐿  for the T-OFDM and hence it achieves maximum 
diversity order. 
 
4.1.2 T-OFDM Coding Gain 
 

To find the coding gain for T-OFDM and show that it 
indeed achieves maximum coding gain, upper and lower 
bounds on coding gain should first be derived. Recall the 
expression for coding gain 
 

                             𝐺 = min
𝒆 𝟎

 det(𝑨 )                                (25) 

 
By the definition of matrix 𝑨 , it is a Toeplitz matrix 

with all diagonal entries equal to ∥ 𝑾𝒆 ∥  [23]. The 
Hadamard inequality, which states the determinant of a 
matrix is less than or equal to the product of diagonal entries 
of the matrix [25], can be used here to get 
 
                          det (𝑨 ) ≤∥ 𝑾𝒆 ∥

⇒ 𝐺  ≤ min
𝒆 𝟎

  ∥ 𝑾𝒆 ∥                        (26)
 

 
The minimum value of ∥ 𝑾𝒆 ∥  will be obtained 

during the single-error event. In particular, define 𝑑𝒜min 
=

min{|𝑎 − 𝑎 | ∣ 𝑎 , 𝑎 ∈ 𝒜, 𝑎 ≠ 𝑎 } , the minimum 
Euclidean distance between any two constellation points 
and assume only one non-zero entry in 𝒆 at the 𝑘th  position, 
i.e., 𝒆 = [𝟎 , 𝑑𝒜 𝟎 , ]𝒯 . In this case, 
 

                   ∥ 𝑾𝒆 ∥ = ∥∥𝑑𝒜min 
[𝑾], ∥∥ = 𝑑𝒜min 

           (27) 
 

because the norm of the 𝑘th  column of 𝑾 is unity. Thus, the 
coding gain of T-OFDM is upper bounded by 
 

                                             𝐺 ≤ 𝑑𝒜 .                               (28) 

 
4.2 SNR per Subchannel 
 

The SNR on the 𝑘th  subchannel was derived in [16]. 
However, it was not demonstrated that T-OFDM is optimal 
in terms of error performance. To find the SNR on the 𝑘th  
subchannel of T-OFDM, recall from Equation (31) in [18] 
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of this series, the expression for the SNR on the 𝑘th  
subchannel of ZF equalized GMC system 
 
𝛽 ,

= 𝛽 ⋅
∏     [𝑫] ,

∑     [𝑸 𝑭ℋ] , ∏  ,   [𝑫] ,

   (29) 

 
and substitute 𝑸 = 𝑻 = 𝑾𝑭 to obtain 

𝛽 ,  = 𝛽
∏     [𝑫] ,

∑     ∣ 𝑾𝑭𝑭 ]𝒌,𝒏|𝟐 ∏  𝑵 𝟏
𝒎 𝟎,𝒎 𝒏   |[𝑫]𝒎,𝒎|𝟐)

  = 𝛽
∏     [𝑫] ,

∑     [𝑾] , ∏  ,   [𝑫] ,

  = 𝛽
𝑁 ∏     [𝑫] ,

∑    ∏  ,   [𝑫] ,

  = 𝛽
𝑁

∑     [𝑫] ,

  = 𝛽 ,                                                              (30)

 

 

where in third equality of (28), [𝑾] , = , ∀𝑘, 𝑛, has 

been used and fourth equality follows by dividing both 

numerator and denominator with ∏   [𝑫] , . 
 

It can be seen from Equation (30) that, like SC-FDE, 
the SNR on all the subchannels of T-OFDM is identical. 
Furthermore, the SNR of T-OFDM on the 𝑘th  subchannel 
is identical to that of SC-FDE. Since the SC-FDE has 
optimal performance in terms of SNR per subchannel [26], 
it follows that the T-OFDM system also has optimal 
performance with respect to ZF equalization. 
 
To get the SINR on the 𝑘th  subchannel of T-OFDM using 
MMSE equalizer, recall the expression SINR on the 𝑘th  
subchannel of GMC system from Equation (53) from Part I 
in this series 
 
�̃� ,

=
[𝑸 𝑭 𝑷𝑫𝑭𝑸 ] ,

∑  ,   [𝑸 𝑭 𝑷𝑫𝑭𝑸 ] , + 𝑁 ∑     [𝑸 𝑭ℋ𝑷] ,

. 

                                                                                                   (31) 
 
and again replacing 𝑸 = 𝑻ℋ = 𝑭ℋ𝑾ℋ  and 𝑸 = 𝑻 =
𝑾𝑭 to get the Equation (32) at the top of next page. 
 

It is difficult to obtain further closed form 
simplifications of this SNR expression in Equation (32). At 
high value of 𝛽 , however, this expression can be simplified. 
To compare the MMSE and ZF SNR on the 𝑘th  subchannel 
of T-OFDM at large value of 𝛽 , such a simplification is 
carried out here. 

In particular, since both 𝑷 and 𝑫 are diagonal, their product 
is also diagonal. Recalling from Equation (42) from [18] 

that [𝑷] , =
𝑫ℋ

,

𝑫𝑫ℋ
,

, it can be seen that [𝑷𝑫] , =

𝑫𝑫ℋ
,

𝑫𝑫ℋ
,

=
[𝑫] ,

[𝑫] ,

. At high SNR such that 

𝛽 [𝑫] , >> 1, ∀𝑢, it can be seen that [𝑷𝑫] , ≈ 1 and 
𝑷𝑫 ≈ 𝑰 ⇒ 𝑾𝑷𝑫𝑾ℋ ≈ 𝑰 . In such case, the numerator 
of Equation (32) can be approximated as 1 for all 𝑘 and first 
summation in the denominator can be approximated as 0, 
for all 𝑘, because summation does not allow 𝑛 = 𝑘. Thus, 
the SNR on the 𝑘th  subchannel can be approximated as 
 

 𝛽MMSE, T-OFDM  ≈
1

𝑁 ∑     [𝑾𝑷] ,

  = 𝛽
1

∑     [𝑾] , [𝑷] ,

                          

 

                       = 𝛽
1

∑     [𝑾] , [𝑷] ,

  = 𝛽
𝑁

∑    
𝛽 [𝑫ℋ] ,

𝛽 [𝑫] , [𝑫ℋ] , + 1

,         (33)
 

 
where second equality in (33) follows because the 𝑷  is 

diagonal. Using 𝛽 [𝑫] , >> 1 ⇒ 𝛽 [𝑫] , [𝑫ℋ] , +

1 ≈ 𝛽 [𝑫] , [𝑫ℋ] , , the approximate SNR on the 𝑘th  
subchannel can be written as, 
 

     𝛽 ,  ≈ 𝛽 ⋅
𝑁

∑    
1

[𝑫] ,

  = 𝛽 ⋅
𝑁 ∏     [𝑫] ,

∑    ∏  ,   [𝑫] ,

  = 𝛽 ,  OFDM .                                     (34)

 

 
Thus, it can be seen that at high SNR, the MMSE and ZF 
equalizers have identical performance for the T-OFDM 
system, which is generally expected for the two equalization 
schemes. 
 
5. Timing Synchronization Errors 
 

In Theorem 2 of [18], the conditions over 𝑸 ∣ 𝑸  
based GMC system were presented that allowed identical 
performance to that of conventional OFDM due to timing 
error, 𝜁, when it holds following bound: 𝐿 − 𝐿 ≤ 𝜁 ≤ 0. 
The two conditions proved in the theorem were: 
a) 𝑸  is 𝑁-periodic and [𝑸] , = 𝑔 𝐾 , [𝑸] , , where 

𝐾  is independent of 𝑣 but same for all entries of 𝑢th  
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row, and 𝑔(⋅,⋅) is an arithmetic operation between the 
arguments, or 

b) 𝑸  itself does not satisfy condition (a) but it can be 
expressed as 𝑸 = �̃� 𝚿, where �̃�  satisfies condition 
(a) and 𝚿 is 𝑁-periodic. 
 

To see the applicability of this theorem to 𝑻 = 𝑾𝑭, first it 
should be checked if 𝑻 is periodic. It was shown in the 
Lemma 3 in [18] of this three-paper series, that product of 
two 𝑁-periodic matrices is also 𝑁-periodic. 
 
 

 

�̃�MMSE, T-OFDM  =
[𝑾𝑭𝑭ℋ𝑷𝑫𝑭𝑭ℋ𝑾ℋ] ,

∑  ,   [𝑾𝑭𝑭ℋ𝑷𝑫𝑭𝑭ℋ𝑾ℋ] , + 𝑁 ∑     [𝑾𝑭𝑭ℋ𝑷] ,

  =
[𝑾𝑷𝑫𝑾ℋ] ,

∑  ,   [𝑾𝑷𝑫𝑾ℋ] , + 𝑁 ∑     [𝑾𝑷] ,

.                                                     (32)

 

 

 
 
The matrix 𝑭 is already well-known to be 𝑁-periodic. To 
check the periodicity of 𝑾 , for 𝑐 = log  𝑁 , recall the 
(𝑢, 𝑣)th  entry of 𝑾 is given as 
 

                           [𝑾] , =
1

√𝑁
  (−1)                      (35) 

 
where 𝑢  and 𝑣  represent the 𝑖th  bits of the binary 
representation of 𝑢 and 𝑣. To see, it periodicity, 
 

           [𝑾] ,  =
1

√𝑁
   (−1)( ) ( )

  =
1

√𝑁
   (−1)

  = [𝑾] , ,                                          (36)

 

 
where the second equality follows because the first 𝑐 bits of 
binary representation of both 𝑝𝑁 and 𝑞𝑁 are all 0s for any 
integers 𝑝  and 𝑞  as 𝑁  is necessarily a power of 2. This 
shows the WHT matrix is 𝑁 -periodic and therefore the 
matrix 𝑻 is also 𝑁-periodic [18]. 
 

However, the matrix 𝑻 still does not satisfy either of 
the conditions required on 𝑸  specified above. It is easy to 
see that, the matrix 𝑾, whose (𝑢, 𝑣)th  entry depends on the 
binary representation of 𝑢  and 𝑣 , does not satisfy the 
condition (𝒂). Therefore, 𝑻 = 𝑾𝑭 also does not satisfy the 
condition (𝒂). To check for the condition (𝒃), since the 
product of 𝑾 and 𝑭 is not commutative, i.e., 𝑾𝑭 ≠ 𝑭𝑾, it 
can be seen that �̃� = 𝑭  and 𝚿 = 𝑾 . While 𝑸 = 𝑭  is 
periodic, 𝚿 = 𝑾 does not satisfy the condition (a). Thus, 
the matrix 𝑻 does not satisfy either of the conditions. Thus, 
even for a small timing error, the T-OFDM system will 
incur ISI in the receiver configuration suggested in its 
original work [22], where the 𝑇-transform is implemented 
at the receiver. Following simulation example verifies 
above discussion. 

 
Figure 4 compares the conventional OFDM and T-OFDM 
for sensitivity to timing synchronization errors. For timing 
error of only one sample, |𝜁| = 1 , the figure plots the 
received complex alphabet symbols after the FFT and T-
transforms for conventional and T-OFDM, respectively. As 
can be seen, conventional OFDM incurs only a phase 
rotation (square 16-QAM constellation at transmitter turns 
into a constellation with three concentric circles), which can 
be corrected along with single-tap equalization. For the case 
of T-OFDM, constellation points cannot be reconstructed 
easily. 
 

 
Figure 4: Received complex symbols after DFT and T-transforms 

plotted on constellation when 𝑁 = 1024 and |𝜁| = 1. 
 

To avoid this performance degradation due to timing 
errors in T-OFDM, the proposed receiver configuration can 
be used (see Figure 1(d)). In particular, after the FFT, the 
phase rotation (as shown in Figure 4) can be corrected along 
with single-tap equalization, which can then be followed by 
the WHT transform. Thus, besides reducing the complexity 
of the receiver, the proposed receiver configuration 
alleviates the sensitivity of T-OFDM system against the 
timing errors. 
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6. Conclusions 
 

This paper studied the T-OFDM system with various 
receiver configuration. The PAPR performance of the T-
OFDM was also studied using both analytical expressions 
and simulation results. It was shown using the SNR per 
subchannel that T-OFDM is optimal in error performance. 
The diversity order and coding gain of T-OFDM were also 
investigated, resulting in new closed form expressions. 
Simulation results showed that the error performance of T-
OFDM matches that of SC-FDE system. An upper bound 
on the SNR in the presence of CFO was also derived. 
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