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ON ROUGH LACUNARY STATISTICAL CONVERGENCE
FOR DOUBLE SEQUENCES IN NEUTROSOPHIC NORMED
SPACE

OMER Kigr* AND MEHMET GURDAL

Abstract. Within the neutrosophic normed space (MMNG), we present
the notion of rough lacunary statistical convergence of double sequences in
this study. Additionally, we delve into the exploration of rough lacunary
statistical cluster points for double sequences in MNG and scrutinize the
correlation between this set of cluster points and the set of rough lacunary
statistical limit points associated with the mentioned convergence.

1. Introduction

In mathematics, the concept of sequence convergence has undergone di-
verse generalizations with the introduction of various summability methods.
Statistical convergence, introduced independently by Steinhaus [29] and Fast
[6], is one such notion that generalizes the ordinary convergence of sequences
comprising real and complex numbers. Fridy and Orhan [7] initially explored
lacunary statistical convergence. Subsequently, Cakan et al. [5] delved into the
examination of lacunary statistical convergence using a double sequence. See
[4, 9, 10, 11, 12, 22, 25, 26, 27| for the fundamental characteristics and details
of these novel ideas.

The idea of rough convergence for sequences in a finite-dimensional normed
linear space was first introduced by Phu [23], who also introduced the idea
of roughness degree. This idea was later extended to an infinite-dimensional
normed linear space [24]. In addition to exploring rough convergence, Phu
investigated analytical properties such as convexity and the closeness of the set
of rough limits. Aytar [3] extended the concept of rough convergence to rough
statistical convergence, utilizing natural density, and examined the relationship
between the set of statistical cluster points and the set of rough statistical
limit points for a sequence. Building on the concept of rough convergence,
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various authors explored rough convergence and statistical rough convergence
for sequences of different forms. The exploration extended to the study of rough
convergence, rough statistical convergence for double sequences in [17, 19, 20].

Zadeh [30] introduced the Theory of Fuzzy Sets (§&), which had a pro-
found impact on various scientific fields. However, F'S sometimes struggle
with the challenge of handling uncertain membership degrees. To address this,
Atanassov [2] extended the theory to Intuitionistic Fuzzy Sets (J§&). Kramosil
and Michalek [18] explored Fuzzy Metric Spaces (FMS) using fuzzy and prob-
abilistic metric space concepts. By treating the distance between two points
as a non-negative fuzzy number, Kaleva and Seikkala [13] examined NG .
Qualifications for MG were specified by George and Veeramani [8]. FMS
attracted attention due to its useful applications in fixed-point theory, medical
imaging, and decision-making.

Smarandache [28] investigated the 'Neutrosophic set’ (M&) as a generaliza-
tion of §&, JFS to address uncertainty in practical problem-solving. The mem-
bership functions of falsehood (F), indeterminacy (I), and truth (T) comprise
the 91&. Neutrosophy implies impartial knowledge of thought, distinguishing
NG from fuzzy, neutral, logic, and intuitive fuzzy sets.

In MG, uncertainty is independent of T and F values, making 91& more
general than J§G& due to the lack of limitations among the degrees of T, F,
and I. Neutrosophy signifies impartial knowledge and neutral describes the
fundamental difference from neutral, fuzzy, intuitive fuzzy sets, and logic.

Menger [21] introduced Triangular Norms (t-norms) (T91) as a generaliza-
tion of the probability distribution with the triangle inequality in metric space
terms. Triangular Conorms (t-conorms) (T€), known as dual operations of TN,
play a crucial role in fuzzy operations such as intersections and unions. TN
and TC are essential components for handling fuzzy operations in the context
of metric spaces.

Neutrosophic metric space, defined by continuous t-norms and continuous
t-conorms, was first proposed by Kirigci and Simgek [15]. Additionally, Kirigci
and Simsek [16] extended their investigation to MG and explored statistical
convergence within the framework of 9ING.

Antal et al. [1] proposed the idea of rough statistical convergence for se-
quences. The authors in the study [14] proposed a modification to the definition
of MNG, as originally introduced in [15]. The study introduces the concept of
rough lacunary statistical convergence of sequences within this adapted space.

At times, the precise values of terms in a convergent sequence (w,) be-
come challenging to ascertain for large enough w, v. In these situations, an
approximation error is produced by using a different sequence (v,,) for the
approximation. The idea of rough convergence was born out of these circum-
stances.

The objective of our research is to expand the concept of convergence to
double sequences within 991G and investigate various algebraic and topological
properties. We investigated this novel convergence, in which the limit might



430 Omer Kisi and Mehmet Giirdal

appear as a set instead of a single point, by closely examining the topological
(closedness) and geometric properties of the limit set. Moreover, for a given
roughness degree r > 0, examples were provided to show that the set of all rough
lacunary statistical convergent sequences is not a linear space. Furthermore,
we established the connection between the cluster point set and the limit set
under rough lacunary statistical convergence by introducing the idea of a rough
lacunary statistical cluster point in MING.

2. Auxiliary Definitions

A few necessary definitions are provided in this section.

Definition 2.1. Assuming F is a linear space over the field V and ¢ and
x are TN and TC, respectively. Let ©,€) and ¥ be single valued fuzzy sets on
F % (0,00). We designate the 6-tuple (F,©,Q, ¥, O, %) as a MNGS if, for all
w,y € F and T,k > 0, the following conditions are satisfied:
(i) O(w,7) + Uw,7) + ¥(w,7) < 3,
(ii) O(w,7) =1, Qw,7) =0 and ¥(w,7) =0 if w = 0,
(iii) ©(fw,T) = O (w, ﬁ) , QPw, ) =0 <w, ﬁ) and ¥(fw,7) =T (w, ‘i)
for any 0 # 8 € F,
(iv) O(w+7v, 7+ k) > O(w, 7)00 (7, k), Qw4+, 7+ k) < Qw, 7) *Q(v, k) and
U(w+7,7+k) <U(w,7)*V(y, k),
(v) O(w,.), Q(w,.) and ¥(w,.) are continuous on (0, c0),
(vi) lim; 00 O(w, 7) =1, lim, 00 Qw, 7) = 0 and lim,_,oc ¥(w,7) =0,
(vii) lim; 0 O(w, 7) = 0, lim, 0 Q(w,7) =1 and lim,_,o ¥(w,7) = 1.
In this scenario, we denote the 3-tuple (©,Q, ¥) as a neutrosophic norm (shortly,
NN) on F.

Example 2.2. Let (F,||||.) be a normed space. Consider v10v2 = 71 - 72
and v1 * y2 = min {y; + y2, 1}, V71,72 € [0,1]. Additionally, define ©,), and

U as follows:
T [[w]] 2|jw]|
O(w,7) = ———, Y(u,p) = and ¥(w, p) = — - —
7+ || 7+ ||wll 7+ 2[|w]|

for allw € F and 7 > 0. Then (F,0,Q,V¥, 0, %) is a NMNG.

Definition 2.3. Consider a NG (F,0,Q,V, O, *) and let w € F. For a
given r > 0 and 7 € (0,1), the set

BEEY (r 1) ={v e F:O(w-v,r)>1-7, Qw-v,7) <7 and ¥(w—v,7) < T}

defines an open ball with centered at w and radius r w.r.t 7 € (0, 1).
Define

So.0w)(F) = {A CF: forallwe A, Ir>0andTe (0,1): BOXD(r 1) A} .
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Then S(,0,w)(F) defines a topology on F, which is induced by NN (©,Q, ¥).
Since

1 1 1 1 1 1
{UE?:@(m—U,)>1—, Q<w—v,> <and\11<w—v,> <}
s s s s s s

is a local base at w € F, the topology (e o,w)(F) on F is first countable.

Definition 2.4. Let (F,0,Q,¥,0, %) be a MNGS. A sequence (w,) in F
converges to w w.r.t NN (©,Q,¥), if

O (wy —w,7) = 1, Q(wy —w,7) = 0 and ¥ (w, —w,7) = 0 as u — oo,
supplies for each 7 > 0. We write the limit as (©,Q,¥) — limw, = w.

Definition 2.5. A sequence (w,,) in F Is statistically convergent to w € F
w.r.t NN (0,0, ), if for all v € (0,1) and 7 > 0,

1
tlim ¥|{u§t:®(wu—w,7') <l—vorQ(wy, —w,7)>vor¥(w,—w,7)>7v}=0.
—00
We represent the limit as (0,Q, ¥)g — limw, = w.

Definition 2.6. A sequence (w,) in F is said to be rough convergent to
w e F wr.t MN (0,Q,V) for some r > 0, if for each v € (0,1) and 7 > 0,
there exists ug € N such that

O(wy —w,r+7)>1—y, Q(wy —w,r+7) <vyand ¥ (w, —w,r+7) <7, Yu> up.
We represent the limit as (©,Q,¥)" — limw, = w.

Definition 2.7. A double sequence (wy,) is considered rough convergent
(r-convergent) to w with the roughness degree r, denoted by wy, s w, if for
every € > 0, 3k. € N such that for all u,v > k., the condition ||wy, —w|| < r+e
holds. Equivalently, it can be expressed as limsup ||wy, — w|| < 7.

Definition 2.8. A double sequence 03 = 04 = {(ks,1;)} is called double
lacunary sequence if there exist two increasing sequences of integers (k,) and
(Is) such that

ko=0, hs=ks —ke_1 —o0andly=0, hy =1, —l;_1 — 00, s,t — 0.
We use the notation kg = ksli, he = hshy and 0, is determined by

Tot :={(s,t) : ks—1 < k < kg and l;_1 <1 <1},

_ Iy _
qs ‘= y Q= T and qs = qsqy-
ks—1 ly—1
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3. Main Results

Within the context of MNG (F,0,0Q, ¥, O, *), we introduce the concepts
of rough convergence and rough lacunary statistical convergence for double
sequences in this section.

Definition 3.1. We define a double sequence (w.,,) in F as rough conver-
gent to w € F w.r.t N (60,0, ¥) for some r > 0 if, for any v € (0,1) and
7 > 0, there exist ug, vg € N such that

O (Wyy —w, T +7) > 1 =7, Q(wyp —w, T+ 7) <7 and ¥ (wyy —w,r+7) <7,
for all u > ug, v > vg.
The convergence of the sequence (wy, ) is characterized by the limit expressed as

(0,Q,9)" —limw,, = w. The roughness degree of convergence of the sequence
(wuyy) 1s represented by r in this context.

Definition 3.2. We say that a double sequence (w.,,) in F is rough lacunary
statistically convergent tow € F w.r.t N (©,Q, V) for a few r > 0, if for each
v € (0,1) and 7 > 0,

limg ¢ 00 i% H(u,v) € Zst : © (Wyo —w,r+7) <1 -7,
QWyp —wy,r+7) =7 0or V(wyy —w,r+7) >} =0

supplies. We demonstrate the limit as (©, , \I!)ge2 —limw,, = w.

Remark 3.3. The ordinary convergence of (wy,) w.r.t. NN (0,Q, V) is
equal the rough convergence of a sequence (wy, ) in F whenr = 0. The lacunary
statistical convergence of (wy,) w.r.t N (©,Q, V) is what we refer to in this
case as the rough lacunary statistical convergence of (w,,,), and denote the limit
as (0,0, ¥)s, —limwy,, = w.

Let (F,0,Q,%,0,%) be an MNGS and (wyy) € F. In this context, both
(6,9Q,9)" —limw,, and (0,1, \Il)ge2 — lim wy,, may not be unique. Therefore,
we use

(0,9,7) —LIM" (wyy) = {w e F:(0,Q,0)" — limw,, =w},
and

(0,9, ¥)s,, — LIM (wy,) = {w € F:(0,9,0)5, —limuw,, = w}

to demonstrate the set of all (0, 2, ¥)" —lim w,,, and the set of all (O, 2, \I/)gg2 -
lim w,,,, of the double sequence (wy, ), respectively. We define the sequence (w.,)
as rough convergent w.r.t MN (©,Q, V) if (0,0, V) — LIM" (wyy) # @ and as
rough lacunary statistically convergent w.r.t M (0,Q, V) if (6,Q,¥)s, —
LIM" (wyy) # O for some r > 0. Certainly, it is evident from the definitions
that 0 < r; <y, then

(6,9,0) — LIM™ (wy,) C (0,2, %) — LIM" (w,,)



On rough lacunary statistical convergence for double sequences 433

and
(@,Q,\II)S(92 — LIM™ (wyy) C (@,Q,\I/)Se2 — LIM"™ (wyy)

for a sequence (wy,) in F.

Example 3.4. Take NS (R, 0,0, ¥, O, *) as described in Example 2.2.
The sequence (wy,) in R is defined as follows:

-1, ifu,v=3s—2

Wyp = & 4, ifu,v=3s—1 ,seN.
1, if not
Then
_ , _f A-rr—1], ifrzg
Assuming 05 = (ks;) is a double lacunary sequence such that liminf kffl > 1,

lim inf; ltlil > 1 and consider
wy, ifu=2% v=2°¢
Uyp = —2, ifu=2s, v=2t , s,t€N.
2, if not
Then

2—rr—2], ifr>2

(0,9, \11)592 — LIM" (vyy) = { 0 if not.

In relation to NN (O, Q, ¥), none of the sequences (wy,) nor (vy,) converge in
the ordinary sense. On the other hand, they are, respectively, rough lacunary
statistical convergent and rough convergent. Moreover, there is no (©,Q, ¥)" —
lim vy, .

Remark 3.5. The convergence of a subsequence in a MNG implies that it
converges to the same limit in the corresponding NN (©,Q,¥). In line with
this characteristic, for any subsequence (wy,v, ) of a sequence (wy,) in a NNG
and r > 0, we have

(0,9, ¥) — LIM" (wy) C (0,2, %) — LIM" w,, -

This inclusion is valid when (0, Q, ¥)"—lim w,, exists. However, it is important
to note that this does not hold true in the context of rough lacunary statistical
convergence. To illustrate and support the aforementioned statement, consider
the following example.

Example 3.6. Let (R, || - ||) be the usual normed space. Explain v, x yo =
min {y1,72} and 71 072 = max{y1,72}, V71,72 € [0,1]. If

T [l

QHWH
— Qw,7) = ————— and ¥(w, 1) =
7"‘”"-)”7 ( , ) 7"‘”‘*’” ( ’ )

Ow,7) = =
. 7) T alal

g € RY,
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then (R,©,0Q, T, O, * )isa‘ﬁ‘ﬁG Assume that 02 (kuly) beadoub]e lacunary
sequence such that lim in

Sk
22 s t
u v 1fu:2,v:2
Wuw { 1, if not 5,1 EN.

Then (0,90, V)s, —LIM" (wyy) = [L—=7,1+7] for all7 > 0, but (6,Q,¥)g,
LIM" Wosgt = @

We can now give our auxiliary theorem, which plays an important role in
the proofs of the following results.

Lemma 3.7. Assume that (F,0,Q,V, 0, %) is a MNG and (w.,) is a se-
quence in F. For each v € (0,1) and 7 > 0, the corresponding propositions
hold:

(i) (@,Q,\IJ)TSQ2 — lim wy, = w.

(ii)
limg ;00 3 i |{(u V) €Zst : O (Wyy —w,r+7) <1 —7},
= lim, 500 7 |{(u V) € Lot : Q(wyp —w, 7 +7) =7},
= lim; 400 ™ |{(u V) €Tt U (Wyy —w, 7+ 7) >} =0.

(iii)
hmst_,ooh H{(u,v) € Zst : O (Wyp —w,r+7)>1—17
Q(Wuv wr+7)<’y7\IJ(qu W7T+T><’7}|_1'

(iv)
hms,t_,oo |{( ) € Tst 2 O (wyy —w,r +7) > 1— 7}
=limg ;500 7 |{(u v) € Lot : Q(wyp —w, T+ 7) < v}
= lim; 00 h |{(u V) €Tt U (Wyy —w,r+7) <y} =1

Proof. The results are self-evident, and therefore, the proof is omitted. [

Theorem 3.8. Suppose that (F,0,Q, ¥, O, *) be a MNGS and take (w,,) €
F. Then, if (0,9, V)" — lim w,, exists,
(0,9, W) — LIM" (w,,) C (6,9, ¥)s,, — LIM" (w,,) -
Proof. Let w € (©,,%) — LIM" (wy,). For all v € (0,1) and 7 > 0, Juy,
vo € N such that
O (Wyp —w,m+7)>1—7, Q(Wyp —w,7+7) < and
U (Wyy —w,r+7) <7, Yu>ug, v>uv.
Thus
{( V) ENXN:O(wyy —w,r+7)<1—7
Q(wWyy —w,r+7) >y or U(wyy —w,r+7) >~}

C{( 1),(2,2),...,(uo — Lvg —1)}.
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Since

lim hist {(u,v) € Ig : (u,v) € {(1,1),(2,2),...,(up — 1,9 —1)}}| =0,

s,t—00
we get

hms,t—)ooﬁ | {(U,U) Ezst : e(wuv_w;r+7) S 1_’7
Q(wyw —w,7+7) =y or ¥ (wyy —w,r+7) >7}} =0.

Hence, w € (0,9, ¥)g,, — LIM" (wyy). The conclusion is thereby established.
O

Based on the theorem mentioned above, it is evident that rough lacunary
statistical convergence is a broader concept compared to rough convergence in
NNGS. However, it’s essential to note that the reverse inclusion relation, as
demonstrated in Example 3.4, does not hold true.

For a certain roughness degree » > 0, an IFNS states that the sum of
two rough statistically convergent sequences and the scalar multiplication of a
rough statistically convergent sequence are both rough statistically convergent.
It is important to remember, nevertheless, that this analogous assertion does
not hold in general when discussing rough lacunary statistical convergence in
neutrosophic normed spaces (MINS). The following claims are supported by
the given instances and statements.

Proposition 3.9. Consider the NG (F, 0,0, ¥, O, x) Consider two se-
quences (wyy) and (¥, ) in F. If (©, 9, \11)2102 —limwy, = w and (6,9, \11)2292 _
lim ¥, = ¥ for some ry,r5 > 0, then

(0,9, W)G ) —Tim [wyy + D] = w + 0.

Proof. Given~ € (0, 1), there exists y; € (0,1) such that (1 — 1) 0 (1 — 1) >
1—~v and y; xv; <. Suppose (6, Q, \Il)gl% —limwy, =w and (6, \11)?92 -
lim 9, = 9 for a certain r1,ro > 0. For any 7 > 0, take into

P= {(u,v) GNXN:G)(wUU—w,rl—i—%) >1—,
Q(wuw —w,r1+3) <7 and ¥ (wyy —w, 1 +3) <M},

and
Q:{(u,v)eNxN:@(ﬁw—ﬁmg—I—%) >1—,
Q(ﬁuvfﬂ,rng%) <m and\Il(ﬂuvfﬁ,r2+%) <'yl}.

Then, by Lemma 3.7, we deduce

limg ;00 }% {(u,v) € Zst : (u,v) € P}
= lim; 500 % H{(u,v) € Zst : (u,v) € Q} = 1.

It is evident that PN Q # 0 and

lim hi {(u,v) € Zs; : (u,v) € PNQ} =1
t

$,t—00 Ng
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Consider (u,v) € PN Q. Then

O ((Wyp + V) — (W+ V), 11 + 12+ 7)
2@(wuv—w,r1+%) 0O (’197“,—’[9,7"2—‘1-%)
>(1=m)0(1—m)

>1—7,

Q (W + up) — (WH+9), 11 + 72+ 7)
<Q(wyo —w, 1+ 5) *Q (D — 9, r2 + F)
<mM*m
<,
and
U (Wyp + Pup) — (W+ ), 11 + 12+ 7)
< \Il(wuv—w,rl—l—% *\Il(ﬁuv—ﬁ,rg—i—%)
<m*m
<.
Hence
PNnQ C{(u,v) eENXN:0O ((Wyp + ) — (W+I),r1 +r9+7) >1—17,
Q(Wup + uw) — (WH ), 711+ +7) <7
and U ((wyy + Yn) — (wW+9),r1 + 12+ 7) <7}

This means that

limg ¢ 00 hit H{(u,v) € Zst : (u,v) € PNQ}|
< limg 400 hit | {(u,v) € Tot : © ((wup + Pup) — (W+ ), r+7) >1—17,

Q (Wup +Oup) = (W+ ), 7+ 7) <vand ¥ ((wyy + uw) — (W+9),r+7) <~} .
Thus,

limg ¢ 00 hit | {(u,v) € Zst : © ((Wup + V) — (W+ ), 11 +1r2+7) >1—17,
Q (Wup + up) — (WH+F), 11 + 10+ 1) <7
and U ((wyy + o) — (w+9), 11 +ro+p) <} =1

is what we have. Consequently, (O, (2, \Il)g;l;rr?) —lim [wyy + o] =w +9. O

Remark 3.10. Proposition 3.9 is not valid for 0 < t < ry + ro when at
least one of r1 and ro is non-zero.

Example 3.11. Take into consideration the MNG (R, ©,Q, ¥, O, *) as de-
fined in Example 2.2. Establish

0, ifu=3% v=3"
Wy =4 —1, ifu=2s, v=2t , s,t €N
1 if not

)
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and
1, ifu=3% v=3
Yo = -2, ifu=2s, v=2t , s,te€N.
2, if not

It is evident that

(0,9, 9) = LIM" (w,,) —{ [1—rir = 1], i > 1

0, if not,
and
r [277’2,?”272]7 1107’222
J— 2 =
(0,4, %) = LIM™ (Jur) { 0, if not.
1, ifu=3% v=3¢
Wuo + Fyo = -3, ifu=2s, v=2t , s,t €N.
3, ifnot
Then

B-tt—3], ift>3

0, if not.

(0,9,9)" —limw,, and (0©,Q,¥)" —limd,, are equal to 0 if r; = 1 and
ry = 2. We obtain (0,Q, ¥) — LIM' [wyy 4+ Py = 0 for 0 <t <7y + 79 = 3.

(0,9,¥) — LIM" [wyy + Pun] = {

Proposition 3.12. Suppose that (F,0,Q,¥, 0, ) be a MNG and (wyy)
be a sequence in F. If (@,97\11)7”592 — limwy, = w for some r > 0, then

(0,9, \I/)‘Scl: — lim cwy,, = cw for any ¢ € F.
Proof. When 0 = ¢ € F, the outcome is clear. Let 0 # ¢ € F. For given

v € (0,1), one has v2 € (0,1) such that 1 — 5 > 1 —~. Since ((9,9,\11)262 -
lim wy,, = w, we can consider the set

U:{(uw)eNxN:@(ww—w,r—&—ﬁ) >1— 79,
Q(wuv—w,r—l—#cl) < andl’(wuv—w,r—l—ﬁ) <’)/2}

with

lim 1 H{(u,v) € Zsy : (u,v) € U} = 1.

s,t—00 hst

Consider (u,v) € U. Then

O (Cwyp — cw,|cjr+7) =06 ww—w,r—i—l%l)
>0 wuv—w,r+2ic‘)
>1_72>1_77

Q(cwyy — cw, lelr +7) =Q Wuv—w,r—ﬁ-ﬁ)

r
SQ Wu'u_wwr"i' 2|c|

<72 <7,
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and
U (cwyy —cw, |e|r +7) =V (wyy —w, T+ ﬁ)
< U wyy —wm—i—ﬁ)
< v <.
Consequently,

U C{(u,v) ENXN:0O (cwyy —cw,|c|r+7)>1—17,
Q (cwyy — cw, |e|r +7) < v and ¥ (cwyy — cw, |c|r +7) < 7}.

Therefore,

limg ¢~ 00 hit [(u,v) € Zst : O (cwyy — cw,|c|r+7) >1 -7~
Q (cwyy — cw, lelr + 1) < v and ¥ (cwyy, — cw, |cjr +7) <~} |= 1.

Consequently, (0, €, \I/)lscelz — lim cwyy = cw. O

Remark 3.13. When 0 < t < |c|r, Proposition 3.12 is invalid for a positive
real number 7.

Example 3.14. Take a look at Example 3.11 and assume c = 2.
0, ifu=3°% v=3"

Wy =4 —2, ifu=2s, v=2t , s,teN
2, if not,
and
_ D _ [2_107]7_2}7 1fp22
(©,Q,9) — LIM (wa){ 0. if not
is evident. If r = 3, then (©,Q,¥) — LIM® (wy,) = [~2,2] and (0,9, V) —
LIM(Z*3) (2wyy) = [—4,4] = 2[—2,2]. However, for any 2 < p < 6, we obtain

(0,9, ) — LIMP (2w,,) = [2 — p,p — 2] # 2[~2,2).

Remarks 3.10 and 3.13 make it abundantly evident that the set of rough
lacunary statistically convergent sequences does not constitute a linear space
for any fixed » > 0, in contrast to ordinary convergent sequences. Let’s now
discuss how a Sp,-bounded sequence is defined in MNGS.

Definition 3.15. We say that a sequence (wy,) in F is Sp,-bounded w.r.t.
NN (0,0,V), if for all v € (0,1), Ja > 0 such that

1
%im e {(u,v) € Zst : © (wyp, @) <1 —7 or Q (wyp, @) >, ¥ (wyp, ) >~} =0.
8,t—00 N gt

Theorem 3.16. Let (w,,) be a sequence in F and (F,0,0Q, ¥ O, ) be a
MNG. In such case, for some r > 0, (wyy) is Sp,-bounded iff (6,2, ¥)s, —
LIM" (wy0) # 0.
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Proof. Assume that (wy,) is Sp,-bounded. For each v € (0,1),there exists
a > 0 such that the set

K ={(u,v) e NXN: 0O (wyy,) <1—70r Q(wyp, ) =7, ¥ (wyy, ) >~}
has

. 1
lim —
s,t—00 hst

{(u,v) € ot : (u,0) € K} = 0.
Thus, utilizing Lemma 3.7, we obtain
K= {(u,v) e NxXN:0O (wyy,a) >1—7 and Q (wyy, @) <7y, ¥ (wyy, ) <~}

and
1

lim = [{(u,v) € Ty : (u,0) € K| =1.
st

s,t—00

Consider (u,v) € K¢. For each 7 > 0, we have

O (wuv, @ +7) = O (Wyy, @) 0O(0,7)
> (1—7)01
=1 -7

Q(wyp, 0+ 7) < Q(wWye, ) *Q(0,7)
< vx*0,
=7,
and
U (Wyp,a +7) < U (wWyy, @) * U(0,7)
< vx*0,
= ’7/.
So, we obtain
KeC{(u,v) e NXN:0 (wyp,a+7)>1—1,
Q(Wup,a+7) <7y and U (wyy,a+7) <7}
and
limg ;o0 i% [ {(u,v) € Zst : O (wyp,a +7) > 1 —1,
Q(wyp,a+7) <vyand ¥ (wyy,a+7) <7} |=1.
Consequently, we have 0 € (©,, ¥)s, —LIM® w,,. Consequently, (0,Q, ¥)s, —
LIM® @,y # 0.
On the contrary, assume (0,Q,V)g, — LIM"wy, # () for some » > 0. So,
there exist w € F such that w € (6,4, ¥)s, — LIM"w,,. Therefore, for each
~v€(0,1) and 7 > 0, we get

L={(u,v) ENXN:0(wyy —w,r+7)>1—1
Q(wyp —w, 7+ 7) <7 and ¥ (wyy —w, 7+ 7) <7}
with
1
lim h—\{(u,v) €Ts: (u,v) € L} =1.
¢

$,t—00 Ng
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Select an T > 0 large enough such that W =T — (r+7) > 0, O(w, W) =1
and Q(w, W) = ¥(w, W) =0. Let (u,v) € L. Then

O (Wup, T) = O (Wyp —w, T+ 7) 0O (w, W)

> (1—7v)01
:1_77

Q(Wur, T) < Q (W — w, 7+ 7) % Qw, W)
<%0

Likewise, we obtain ¥ (wy,,T) < . Thus,
L C{(u,v) ENXN: O (wypy, T)>1—7,Q (W, T) <7, ¥ (We, T) < v}

and so, we get

1
lim " {(u,v) € st : © (Wyn, T) > 1 — 7, Q (e, T) < 7, ¥ (Wi, T) < 7} = 1.
st

s,t—00

As a result, the sequence (wy,) is Sg,-bounded. O

In contrast to ordinary convergence, Theorem 3.16 makes clear that the Sp,-
boundedness of a sequence in a MNMES ensues the presence of a rough lacunary
statistical limit. The limits of rough lacunary statistical convergence and rough
convergence for a sequence are seen as sets, but the convergence limit in a 916G
is unique. Consequently, our focus lies on understanding the topological and
geometrical characteristics of these limit sets.

Theorem 3.17. Let (F,0,Q,¥, O, %) be a MNG and (wy,) be a sequence
in F. After that, for each v > 0, (6,9, ¥)s, — LIM" (wy,) is closed.

Proof. Select y1 € (0,1) for v € (0,1) such that (1 — 1) 0 (1 —~1) > (1—7)
and 1 *y1 < 7. Suppose w € (0,Q,¥)g, — LIM" (wyy). Then, 3 a sequence
() of members of (©, Q, \11)592 —LIM" (wy, ) such that (©,Q, ) —lim 1), =
w. So, for all 7 > 0, 3 ug, vy € N such that

@(%Lv—w,%) >1—71,Q(¢W—w,g) <7 andl’(¢uv—w,g) <7

for all u > ug, v > vo. Adjust s,t > mg so that 15 € (0,2, ¥)s, —LIM" (wyy).
According to Lemma 3.7, we write
K= {(u,v) e N x N:@(ww —1/13“7"4—%) >1-—7,
Q (wuo = Yt 7+ 5) <71 and ¥ (wyy — Yo, 7+ 5) <71}

with 1
lim — [{(u,v) € Zg : (u,v) € K} = 1.
hst

s,t—00

For (u,v) € K, we obtain
G(wuv_w7r+7) Zg(wuv_¢star+%) 09 (’(/}st_wvg)

>1=7)0(1—m)>1-7,
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Q(wuv_war+7) SQ(wuv_wstvr"’_%)*Q(wst_wag)

<m*m <7,
and

\I](wuv_war+7) SW(Wuv_wstar+%)*‘Il(z/}st_wa%)

<R <7
for (u,v) € K. It follows that

limg 100 ﬁ {(u,v) € Zst : O (wyp —w, 7 +7) > 1 —1,
Y ( Wy —w,r+7) <yand ¥ (wyy —w,r+7) <y} =1,

or w € (6,9, \11)592 — LIM" (wyy). Hence, the outcome guarantees. O

For a value of r = 0, the lacunary statistical convergence in 9I91& becomes
the rough version. Consequently, (0,9, V¥)s, — LIM" (wy,) forms a singleton
set, making it closed.

Theorem 3.18. Let (F,0,Q,¥, ), %) be a MNGS and (wy,) be a sequence
in F. Ifr >0, then (0,Q,V)g, — LIM" (wyy) is a convex set.

Proof. Assume that v € (0,1) and wy,ws € (0,92, V¥)s, — LIM" (wy,).
Then, there exists v € (0, 1) such that (1 — 1) 0 (1 — 1) > 1—v and 31 %71 <
~v. We show that

Bwy + (1 — B)wg S (@, Q, \11)592 — LIM" (wuv)

for any 8 € [0, 1]. The proof is straightforward when s = 0 and § = 1. Consider
B € (0,1). For any 7 > 0, we define

T= {(u,v) ENXN:@(qu—wl,r+ é) >1—m
Q(wwfwl,rJr%) < 71 and W(wuvfwl,rJrﬁ) <’yl},
and
V= {(u,v) ENXNI@(qu—wg,T+ ﬁ) >1—m,
Q(wuvfwg,rJrﬁ) < 71 and @(wuvfwg,rJrﬁ) <'yl}.
Since wy, ws € (@,Q,\I/)ng — LIM" (W), we get

limg 4500 i% H{(u,v) € Zss : (u,v) € T}
N H 1 . —
= lm 00 7 {(u,v) € Zst : (u,v) € V}| =1.

So, GNH # () and
1

lim —
s,t—00 hst

{(u,v) € Zet : (u,0) e TNV =1.
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Consider (u,v) € TNV. Next,
O (Wyy — [Bwr + (1 — Bwe],r+ 1)

=0 ((1 - 8) (wuw —w2) + B (wyp —w1), (1 = B)r+ Br+1)
>0 (1= 8) (wuw = w2), (1= B)r +5) 00 (B (wuw —w1) , fr + F)
:9<wuu*w2,7’+ﬁ) [C) (wuvfwl,rJri)

>1=-m)0(1—m)>1-7,
and
Q (Wyp — [Bwr + (1 = Blwa],r +7)

=Q((1 =) (Wuvo — w2) + B (Wup —w1), (1 = B)r + Br +7)
SQ((I_B)((JJ“U_wQ)’(l_ﬁ)T_F%)*Q(B(wuv_wl)aﬂr‘i‘%)
:Q<Wuv_w27r+m) *Q(wuv—whr—i— %)

< vy <.

In a similar vein
\Ij (wuv - [ﬂwl + (]- - B)U/Q]ar + T) < -

This indicates that the set

{(u,v) E N X N: 0O (wyp — [Bwy + (1 = Bws],r+7) >1—1,
Q(wyp — [Bwr + (1 = Bwa], 7+ 7) <7~
and U (wyy, — [Bwr + (1 — Blws], 7 +7) <~}
contains T'N'V as a subset. Consequently, we have
limg ;00 ﬁ | {(u,v) € Tt : © (Wyp — [fwr + (1 — Pwa],r+7) >1—7,
Q (Wyp — [Bwr + (1 = Blwa],r +7) < v
and U (wy, — [Bwr + (1 = Bws],r +7) <} = 1.
Thus, fw; + (1 — Bwz € (0,2, ¥)s,, — LIM" (wyy)- O

When r is equal to 0, rough lacunary statistical convergence becomes equiv-
alent to lacunary statistical convergence in 9MG. Consequently, (6, Q, ¥) Se, —
LIM" (wyy) forms a singleton set, making it inherently convex.

Theorem 3.19. Let (F,0,Q,¥, O, %) be a MNG and (wy,) be a sequence
in F. If there is a sequence (vy,) in F with (©,, ¥)g, —lim vy, = w such that
for each v € (0,1) we have © (Wyy — Vyy, ) > 1 — 7, Q(Wyy — Vuo, ) < 7y and
V (Wyy — Vup, ) < for all (u,v) € N x N, then (0,0, ¥)g, —LIM" (wy) = w
for some r > 0.
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Proof. For given~y € (0, 1), choose 1 € (0,1) such that (1 —v1) O (1 — 1) >
1 —~and 71 *y1 <. Assume (0, Q, \11)592 —limwvy, = w and

O (Wyp — Vuw, ) > 1 — v, Q(Wup — Vyo, 7) < v and ¥ (Wyy — Uyoy 7) < 7y
for each v € (0,1) and for every (u,v) € N x N. For all 7 > 0 and the sets

U={(u,v) ENXN:0O (vyy —w,7) <1— or
or Q(vyy —w,7) =71 or U (vyy —w,T) > 7},
and
V ={(u,v) e NXN: 0O (Wyy — Vyp,7) <1 = Or
or Q (Wuy — Vup, ) =71 08 ¥ (Wyy — Vyns T) > Y1}
we get
limg ¢ 00 f% H{(u,v) € Zst : (u,v) € U}|

= lims 1 00 h% {(u,v) € Zgy : (u,v) € V} =0.

= lim, 4,00 hlst H(u,v) € Zgy : (u,v) € U}
L {(u,v) € Ty : (u,v) € Ve = 1.

= hms,t%oo Broz

Evidently, U¢ N V¢ # () and

1
lim " H(u,v) € Tst : (u,v) € UNVEY = 1.
st

s,t—00
Consider (u,v) € U°NVe. Then

O (Wyp —w, T +7) > 0O (Wyy — Vy, ) OO (Vyy — w, T)

>1=m)0(Q=m)>1-7,

Q(wuy —w, 7+ 7) < Q(Wyp — Uy, 7) * (Vg — w, T)

<7x7 <7,
and
U (wWyy —w, T+ 7) < U (Wyp — Uy 7) ¥ U (Vg — w, T) < 1 %71 < 7.
So,
venve C{(u,v) eENXN:O (wyy —w,7+7)>1—7,

Q(wyy —w,r+7) <vand ¥ (wyy —w, 7 +7) <}

This implies

limg 4500 ,%t | {(u,v) € Zgt : © (Wyp —w,7+7) >1—7,
Q(wyy —w,r+7) <vand U (wyy —w,r+7) <~} |=1.

Thus (0,9, ¥)s,, — LIM" (wu) = w. O
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As per Theorem 3.19, every rough lacunary statistically convergent sequence
(Wyp) within an 9GS may be approximated by a lacunary statistically con-

0.7

vergent sequence (vy,) with an approximation error of ”r” given a certain

19 a7

roughness degree ”r”. Moreover, the lacunary statistical limit of (v,,) aligns
with that of (wy.).

Considering that the limit of a statistically convergent rough lacunary se-
quence in a MNG could contain several points, the following obvious ques-
tion emerges: ”"What is (0,Q,¥)s, — LIM" (wy,)’s diameter?” Addressing
this query, we introduce the ensuing theorem.

Theorem 3.20. Let (F,0,Q,9,0,*) be a MNGS and (wy,) be a sequence
in F. It follows that for every r > 0 and v € (0, 1), there is no pair of elements
wi,we € (0,02, ¥)s, — LIM" (wyy) = w such that ©(w1 — wa,qr) < 1— 7 or
Q(wy — wa, qr) > v or ¥(wy — wa,qr) >~ for g > 2.

Proof. If one possesses 71 € (0,1) then (1 —77)0 (1 =) >1—~v and 7 *
71 < 7 for a given v € (0,1). Whenever feasible, allow w1, ws € (0,8, V)s, —
LIM" (wyy) = w such that

O(wy —wa, qr) <1 —7 or Q(w; —wa, qr) > or U(wy —ws,qr) > v for ¢ > 2.
For each 7 > 0 and establish the following sets

K ={(u,v) ENXN:0 (wyy —w1, 7+ %) >1—1,
Q (wuw —w1,7+ %) <7 and ¥ (wyy — w1, 7+ 3) <M},

and

L= {(u,v)eNxN:@(a}uv—wQ,r—i—%) >1—,
Q wuv_w%r"’%) <M and‘If(wuu—w277"+§) <71}7

we have

1 1
lim h—|{(u,v)eIst:(u,v)6K}\: lim h—\{(u,v)EISt:(u7v)€L}|:1.
st st

s,t—00 s,t—00

Then, K N L # () and

1
lim " {(u,v) € Iy : (u,v) e KNL} =1
t

$,t—00 Ng

are evident. Let (u,v) € K N L. Assume ©(w; — wa,qr) < 1 — v for ¢ > 2.
Then,

1—v >06(w —ws,2r+7)
> 0 (wuy — w1, m+ 3) 0O (wyy — w2, 7+ 3)

>(1=7)0(0—=m)>1-7,
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which is ridiculous. It is ludicrous to assume
v < Qwy; —wse,2r +7)

< Q (wup — w1, 7+ §) % Q (wyp — w2, 7+ F)

<7 *m <7
if Q(wy — we, qr) > v for ¢ > 2.
v < U(w; —we,2r +7)

S\I/(wuv*wlar+%) *\Ij(wuufw%r‘i’%)

<Tx7 <Y

445

if U(wy — ws,qr) > v for ¢ > 2, which is ludicrous once more. The theorem’s
proof is therefore, completed in every case by the nonsensical result that follows.

O

The diameter of the limit set (0,2, V¥)s, — LIM" (wy,) cannot be larger

than 2r, according to Theorem 3.20

Theorem 3.21. In the event that (0,2, ¥)g, —LIM (wy,) =w, 7 € (0,1)
occurs such that, for some r > 0, Bﬁ)@’ﬂ’q’)(r, 71) C (0,92, ¥)g,, — LIM" (wyy).

Proof. Ify € (0, 1) is known, find 3y; € (0,1) such that (1 — 1) 0 (1 — ) >
1 —vand 71 *y1 < 7. Assume that (©,Q,¥)s, — LIMw,, = w. For every

7 > 0 and consider the set
L={(u,v) eENXN:0 (wyp —w,7) >1—m
Q(Wyp —w,7) <y1 and U (wyy — w,7) < Y1}

Then, we get
1

lim o= [{(u,v) € Zo : (u,0) € L} = 1.
st

s,t—00
Select p such that p € By (ryy), r>0.
Ow—p,r)>1—7, Uw—p,r) <71 and ¥(w—p,7r) <7

in such case. Likewise, for (u,v) € L, we get

@(Wuv*par+7_) > 17’73 Q(wuvfpar+7—) <’Y&Ild\I/(qu7p,7'+T) <

Consequently,
LC{(u,v) ENXN:0(wypy —p,r+7)>1—1
Y (Wuo —p,r+7) <7 and n(wee —p,7+7) <7}
So, we obtain
limg ;o0 ﬁ H(u,v) € Tyt : © (Wyp — 7 +7) > 1 — 7,
¥ (wWuy = p,7+7) <7y and 7 (wuy —p,r+7) <7} =1L

Y-
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Thus, p € (0,2, ¥)s,, ~LIM" (wyy). This gives that 85> (r,71) C (0,2, ¥)s, —
LIM" (wyo).

Now, let’s introduce and explore the concept of a rough lacunary statistical
cluster point in a 9INGS as stated below:

Definition 3.22. Let (F,0,Q,¥,0,*) be a NS and consider (wy,) as
a sequence in F. For each r > 0 designated as (0, (2, \11)592 -cluster point, we
define p € F as a rough lacunary statistical cluster point of (wy,) w.r.t. MN

(0,Q,9) if
limg 00 i% {(u,v) € Zst : O (wWyp — py7+7) >1 =1,
¢(Wuv —p,’l’+7') <7 andn(wuv —p,T—i—T) < ’y}l 7&0
holds for every T >0 and v € (0,1). We use I'lg ¢ g, (wuv) to represent the
Q,0)s,,

collection of all (©,Q, \Il)g92 -cluster points of the sequence (wyy)-

When r equals 0, we refer to the rough lacunary statistical cluster point of a
sequence (wyy) in F as the lacunary statistical cluster point of (wy,) w.r.t 9N
(©,9,V), denoted as (6,2, V)s, -cluster point. In this scenario, we represent
the collection of all (6,2, V)g, -cluster points of (wu,) by F(@ﬂ,\p)s% (Wuw)-

This is how we now display the set 1"26197 W), (wuy)’s topological property:
2

Theorem 3.23. Let (F,0,Q,¥,0, %) be a MNGS and consider (w,,) as a
sequence in F. It follows that for any r > 0, 1"2(_) 005 (wyy) is a closed set.
Q.05

Proof. Assume that v € (0,1). Then, there exists v1 € (0,1) such that

(1=7)0(I=m) >1—yand 1%y < 7. Suppose p € g g ), (Wuo)-
2

Then, there is a sequence (py,) of members in FZ@7Q7\P)592 (Wuy) such that

(©,9,T) — lim py, = p. Thus, for each 7 > 0, Jug, vg € N such that

9( uv—p,%) >1—m, Q( uv—pé) <m and‘l'( uv—p,%) <m

for all u > ug, v > vg. Assign s > ug and t > vg. Next,
© (pst —p,g) >1-m, Q (pst - %) <7 and ¥ (pst - P g) <M.
Also, we have
W:{(u,v) ENXN:@(ww—pst,r—l-%) >1—,
Q (wuv — pst, 7+ 5) <m and ¥ (wyo — pst, 7+ 5) <71}
with
lim 1 [{(u,v) € Zst : (u,v) € W} #O0.

s,t—00 hst
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If (u,v) € W, then we get
O (Wuw =P +7) >0 (wyo — pst, 7+ 5) 0O (pst — 1, 3)
>1-7m)01-m)>1-7,
Q(wuo =, 7 +7) < Q(wuo —psts 7+ 3) *Q (pst — 0, 3)

<7*7M <7,
and
\Il(wuvfpar+7_) S\Ij(wuvfpstar‘kg)*\Il(pstfpag)
<7 *m <7
Thus, we get
W Cc{(u,v) ENXN:O(wyy —p,r+7)>1—1
Q(wuy —p,7+7) <7y and ¥ (wyy —p, 7 +7) <7}
= limg; 00 ,%f H(u,v) € Tyt : © (W — 7 +7) > 1 — 7
Q(wyy —pyr+7) <vand ¥ (wy, —p,r+7) <7} #0.
pE F€®7Q,‘I/)s9 (Wyy) as a result, and F€®,Q,W)s9 (Wayw ) is closed. O
2 2

Theorem 3.24. Let (F,0,Q,U, 0, %) be a MNG and let (wy,) be a se-
quence in F. Assume q € Le.0v)s, (Wuw). If, for each v € (0,1),
2

O(p—qr)>1—7 Qp—qr)<yand ¥ (p—q,r) <.

hold for some r > 0, then p € I'lg ¢ ¢y, (Wuv)-

592
Proof. For giveny € (0,1), 3y1 € (0,1) such that (1 — )0 (1 —71) > 1—7
and y1 *y; < . Suppose that g € Le.aws, (Wyp)- Then for every 7 > 0, the
set
T ={(u,v) ENXN:0 (wyp —q,7) >1—1,
Q(wup — ¢, 7) <71 and ¥ (wyy — q,7) <71}
has

lim hit {(u,v) € Zst : (u,v) € T} #0.

s,t—00

Consider p € F such that
O(p—qr)>1-m, Qp—q¢r)<nand¥(p—gqr)<mn

for some r > 0. For any pair (u,v) € T, following a similar approach as
mentioned above, we derive

e(wuv_p7r+7-) > 1_’% Q<wuv_paT+T) <Vand\1,<wuv_pa7d+7—) <’7
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Therefore,
T  C{(u,v) eENXN:O (wyy —p,r+7)>1—1,
Q(wyy = pyr +7) <7y and ¥ (wyy —p,r+7) <V}

= limg 00 %% {(u,v) € Zst : O (Wyw — py7+7) >1—1,
Q(Wuv —Pﬂ“"‘T) < o and \Ij(wuv —P»T'f‘T) < ’7}| 7é O
So, p € 1"((_)797‘1,)562 (W )- O
The aforementioned theorem makes it abundantly evident that there is a
corresponding rough lacunary statistical cluster point for each lacunary statis-

tical cluster point in a sequence in a MNGS. The following theorem is presented
in view of this fact.

Theorem 3.25.
r RrOQY)
F(@,Q,xp)592 (wuv) = U B '(r, )
wEF((—),Q,\p)Sez (Wuw)
exists for some r > 0 and v € (0,1).

Proof. Suppose vy € (0,1) is given. So, 3y; € (0,1) such that (1 —~1) O (1 — 1) >
1 — and 7; *v1 <. For some r > 0, let

pe U B ().

WEF(G,Q,\P)SGQ (Wuv)

Then, Jw € T'@,0,9)s, (wyv) such that p € BEY) (r,v1), that is,
2
Ow—p,7r)>1—7, Qw—p,r) <y and ¥(w —p,r) <.
By w e ].—‘(@797\1/)59 (Wuyy), for each 7 > 0 and the set
2
H={(u,v) e NXN: 0O (wyp —w,7) >1—11,
Qwyp —w, 7) <1 and V(wyy —w,7) <M},

we get

lim th {(u,v) € Zst : (u,v) € H}| #0.

s,t—00
Consider (u,v) € H. In a similar vein, we get
O (Wyy — P, 7 +7)>1—7, Q(wyw —p,7 +7) <7 and U (wy, —p,r+7) <7,
as mentioned earlier. Thus,

H C{(u,v) eNXN:0O (wyy—p,r+7)>1—1,
Qwyp —p,r+7) <vand ¥ (wyy —p,7+7) <}

= limgs 0o hit H{(u,v) € Zst : © (Wyp — py7 +7) > 1—7,
Q(wuv—p,T—FT) < v and \I/(wuv—p,r+r) <7}| #0,
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1 T
that is, p € F(@@,\I/)sgz (Wyw)- So, we have

(1) U B¢ >(T,yl)crwﬁn)582 (Wa) -

wer(@,n,qz)sg (Wuv)
2

Conversely, if p € Mo.0,u)s (Wyw ), then let on contrary
Q.0)s,,

P U 85",

WEF(G),Q,\I/)SO2 (Wuu)

Then, for every w € I'i@.0,v)s, (Wuv), We obtain p ¢ B&e’ﬂ’q})(r, m), ie.,
2
O(w—p,r) <1—7 0or Qw—p,r) >~ or ¥(w—p,7)>7.

Therefore, by Theorem 3.24, we have p ¢ F(@,ﬂ,\l/) (Wuw ), which goes against

5’92
what we assumed. Thus

(2) F?@,Q,\Il)s(_)2 (wuv) - U 851679"1})(7", ’)/1)

wGI‘(@,Q,\p)SQQ (Wauw)
By combining (1) and (2), the result follows. L)

Theorem 3.26. Suppose (F,0,0Q, 0,0, *) is a MNGS. Suppose (wyy) be
sequence in F such that (©,Q, 1’)592 — limwyy = w. Then F?@ Q.0)s, (Wuw) C
mn 2

(0,9,¥)s,, — LIM" (wyy) for some r > 0.
Proof. Assume (0,Q,V)g, —limw,, =w. Thusw € Le.0w)s, (Wyw)- By
2
Theorem 3.25, for some r > 0 and v € (0, 1),
r 0,0,u
(3) Ioaw)s,, (@u) = B (r,).
Also, by Theorem 3.21,
(4) BE ) (r,71) € (0,2, 1) s,, — LIM" (wyo) -
Hence by (3) and (4), we have
2‘9797\1,)592 (wuv) - (@, Q, \I’)Sez — LIM" (wuv) .

4. Conclusion

When a convergent double sequence (w,,) comprises terms that are diffi-
cult to estimate for sufficiently big u,v, another double sequence (v,,) must
be used to approximate the value of the terms, which introduces approxima-
tion error. Rough convergence was introduced as a result of this. A growing
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number of mathematicians are investigating the connection between statisti-
cal convergence and the notions of convergence in neutrosophic normed space.
Nevertheless, the more general idea in this theory has not yet been investigated
by taking the Pringsheim limit into account. By extending neutrosophic theory,
this study has significantly contributed to the body of literature. Two addi-
tions to the subject of neutrosophic theory are made by this study: For double
sequences in MNG, (i) a rough lacunary statistical convergence of a sort; (ii)
a rough lacunary statistical limit and cluster points. These concepts and con-
clusions may be utilized as theoretical tools to examine optimum approaches
of turnpike theory in a fuzzy environment.
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