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TRIPOTENCY OF LINEAR COMBINATIONS OF A

QUADRATIC MATRIX AND AN ARBITRARY MATRIX

Nurgül Kalaycı and Murat Sarduvan∗

Abstract. We give necessary and sufficient conditions for tripotency of

the linear combination of the form aQ + bA, under some certain con-

ditions imposed on Q and A, where Q is a nonzero quadratic matrix,
A is a nonzero arbitrary matrix and a, b are nonzero complex numbers.

Moreover, some examples illustrating the main results are given.

1. Introduction

Let C be the field of complex numbers and C∗ = C\ {0}. Cm,n and Cn

denote the sets of m × n complex matrices and n × n complex matrices for
positive integers m,n.

A matrix M ∈ Cn is called an involutive, an idempotent, a tripotent, and a
k–potent matrix if M2 = In, M

2 = M, M3 = M, and Mk = M, respectively,
where k ≥ 2 is a positive integer, In stands for the identity matrix of order n.
Moreover, for α, β, η ∈ C, a matrix M ∈ Cn is called an {α, β, η}–cubic matrix
and an {α, β}–quadratic matrix if (M− αIn) (M− βIn) (M− ηIn) = 0 and
(M− αIn) (M− βIn) = 0, respectively, where 0 stands for a zero matrix of
appropriate size [17]. It is worth pointing out that quadratic matrices are a
large class of matrices, including idempotent, involutive, nilpotent (M2 = 0,
M ∈ Cn), etc. matrices. Similarly, tripotent and quadratic matrices are some
subclasses of cubic matrices. Mainly, the above mentioned matrices and the
problems in this paper related to these matrices should be of interest not only
from the algebraic point of view but also from the role these type matrices play
in applied sciences such as statistical theory [7, 10, 11], quantum mechanics
[1, 5], digital image encryption [20]. These explain the intense interest in these
types of matrices in the literature.

Note that an idempotent matrix and an involutive matrix are an {α, β}–
quadratic matrix for {α, β} = {0, 1} and {α, β} = {−1, 1}, respectively. Like-
wise, for {α, β, η} = {−1, 0, 1}, a tripotent matrix is an {α, β, η}–cubic matrix.
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One can find detailed information about quadratic matrices in [2, 12]. A useful
one of them is given below. From Theorem 2.1 in [12], an {α, β}–quadratic
matrix Q ∈ Cn can be written as

(1) Q = U (αIp ⊕ βIn−p)U
−1,

where α, β ∈ C and α ̸= β, p ∈ {0, 1, . . . , n}, the symbol ⊕ denotes the direct
sum of matrices, and U is a nonsingular matrix.

Consider a linear combination of the form

(2) T = aQ+ bA, Q,A ∈ Cn, a, b ∈ C∗.

The tripotency of the linear combinations of the form (2) has been the
subject to many papers when Q and A are k–potent matrices (for example,
[3, 4, 13, 14, 15, 21, 22]). Moreover, the problem of being a special type of
matrix of the linear combination has been studied many times when at least
one of Q and A is a tripotent matrix [3, 4, 6, 8, 9, 13, 14, 15, 21, 22] or a
quadratic matrix [8, 16, 17, 18, 19].

Recently, there are some studies concerning that the T in (2) is a special
type of matrix when one of Q and A is a special type matrix and the other is
an arbitrary matrix. One of them is the paper of Liu et al. that characterize
the involutiveness of the matrix T when Q is a quadratic or a tripotent matrix
and A is an arbitrary matrix, under some certain conditions [8]. Moreover,
the results about the involutiveness of the linear combination are given in [17]
whenA is an arbitrary matrix andQ is a quadratic matrix under some different
conditions. Furthermore, the necessary and sufficient conditions to aQ+bA be
idempotent are obtained when A is an arbitrary matrix and Q is a quadratic
or a cubic matrix [16].

This paper’s purpose is to present the necessary and sufficient conditions for
tripotency of the linear combination in (2) when A is an arbitrary matrix and
Q is a quadratic matrix, under some specific conditions related to them. More-
over, there are several types of examples at the end of the paper exemplifying
the main results.

2. Main Results

We establish the results of tripotency of the linear combinations of the form
(2) in this section. The arbitrary matrixA, which provides the conditions in the
hypotheses of theorems given below, has been a zero matrix (this contradicts
the assumptions of theorems below) except certain values of the scalars α or
β. In fact, since the arbitrary matrix A has to be a zero matrix when α ̸= 1,
β ̸= 1, and β ̸= 0, the following results are striking.

Theorem 2.1. Let T be a linear combination of the form T = aQ +
bA where Q ∈ Cn\ {0} is an {α, β}− quadratic matrix, A ∈ Cn\ {0} is an
arbitrary matrix and β ∈ C, α, a, b ∈ C∗, and α ̸= β. Then QAQ = AQ and
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T is a tripotent matrix if and only if there exists a nonsingular matrix V ∈ Cn

such that

(3) Q = V

(
αIp 0
0 βIn−p

)
V−1

and A satisfies one of the following cases.

(a) β = 1,
(a− i) aα = 1,

(4) A = V



0p 0 0 0

0 α−1
αb Is 0 0

Z2 0 −α−1
αb It 0

Z3 0 0 −1
αb In−p−s−t


V−1,

(a− ii) aα = −1,

(5) A = V



0p 0 0 0

Z1
α+1
αb Is 0 0

0 0 −α+1
αb It 0

Z3 0 0 1
αbIn−p−s−t


V−1,

being Z1 ∈ Cs,p, Z2 ∈ Ct,p, and Z3 ∈ C(n−p−s−t),p arbitrary.
(b) β ̸= 1,

(b1) β = 0 and α = 1,

(6) A = V



1−a
b Iq 0 0 0 Y2 Y3

0 −1−a
b Ir 0 Y4 0 Y6

0 0 −a
b Ip−q−r Y7 Y8 0

0 0 0 1
b Is 0 0

0 0 0 0 − 1
b It 0

0 0 0 0 0 0n−p−s−t


V−1,

being Y2 ∈ Cq,t, Y3 ∈ Cq,(n−p−s−t), Y4 ∈ Cr,s, Y6 ∈ Cr,(n−p−s−t),
Y7 ∈ C(p−q−r),s, and Y8 ∈ C(p−q−r),t arbitrary.
(b2) β = 0, α ̸= 1, and
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(b2 − i) aα = 1,

(7) A = V



0p 0 Y′
2 Y′

3

0 1
b Is 0 0

0 0 − 1
b It 0

0 0 0 0n−p−s−t


V−1,

(b2 − ii) aα = −1,

(8) A = V



0p Y′
1 0 Y′

3

0 1
b Is 0 0

0 0 − 1
b It 0

0 0 0 0n−p−s−t


V−1,

being Y′
1 ∈ Cp,s, Y′

2 ∈ Cp,t, and Y′
3 ∈ Cp,(n−p−s−t) arbitrary.

(b3) β ̸= 0, α = 1, and
(b3 − i) aβ = 1,

(9) A = V



β−1
βb Iq 0 0 0

0 −β−1
βb Ir 0 Y′′

2

0 0 − 1
βbIp−q−r Y′′

3

0 0 0 0n−p


V−1,

(b3 − ii) aβ = −1,

(10) A = V



β+1
βb Iq 0 0 Y′′

1

0 −β+1
βb Ir 0 0

0 0 1
βbIp−q−r Y′′

3

0 0 0 0n−p


V−1,

being Y′′
1 ∈ Cq,(n−p), Y′′

2 ∈ Cr,(n−p), and Y′′
3 ∈ C(p−q−r),(n−p) arbitrary.

Proof. From (1), there exist p ∈ {0, 1, . . . , n} and a nonsingular matrix
U ∈ Cn such that

Q = U (αIp ⊕ βIn−p)U
−1.
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Since A is an arbitrary matrix, it can be written as A = U

(
X Y
Z W

)
U−1,

where X ∈ Cp. By the facts that QAQ = AQ, α ̸= 0, it can be written

(11) αX = X, αβY = βY, βZ = Z, β2W = βW.

Now let us assume that T is a tripotent matrix, then we have the following
equalities
(12)(

aαIp + bX
)3 + ab2 (2α + β)YZ + b3 (XYZ + YZX + YWZ) = aαIp + bX,

a2b
(
α2 + αβ + β2

)
Y + ab2 ((2α + β)XY + (α + 2β)YW) + b3

(
X2Y + XYW + YZY + YW2

)
= bY,

a2b
(
α2 + αβ + β2

)
Z + ab2 ((2α + β)ZX + (α + 2β)WZ) + b3

(
ZX2 + ZYZ + WZX + W2Z

)
= bZ,

(
aβIn−p + bW

)3 + ab2 (α + 2β)ZY + b3 (ZXY + ZYW + WZY) = aβIn−p + bW.

Depending on the values of the scalar β, the following cases should be examined.

(i) Let us assume that β = 1. X = 0 and Y = 0 is obtained by taking the first
two equations in (11). Reorganizing (12) yields directly the equalities below

(13)
(aαIp)

3
= aαIp, (aIn−p + bW)

3
= aIn−p + bW,

a2b
(
α2 + α+ 1

)
Z+ ab2 (α+ 2)WZ+ b3W2Z = bZ.

First let us consider the second and first equations in (13). aIn−p + bW is a
tripotent matrix and aα ∈ {−1, 1} since α, a ̸= 0. Since a tripotent matrix
is a {−1, 0, 1}− cubic matrix, from the Lemma 1.1 in [16], there exist s, t ∈
{0, 1, . . . , n− p}, s+ t ≤ n− p and a nonsingular matrix S ∈ C(n−p) such that

(14) W = S

(
1− a

b
Is ⊕

−1− a

b
It ⊕

−a

b
In−p−s−t

)
S−1.

Let

(15) Z = S

 Z1

Z2

Z3

 ,

where Z1 ∈ Cs,p and Z2 ∈ Ct,p. Substituting (14) and (15) into the third
equation in (13) leads to aα (aα+ 1)Z1

aα (aα− 1)Z2

(aα− 1) (aα+ 1)Z3

 =

 0
0
0

 .

We have known from the above that aα ∈ {−1, 1}. If aα = 1, then Z1 = 0 and
the matrix Z is

(16) Z = S

 0
Z2

Z3

 .
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If aα = −1, then Z2 = 0. So the matrix Z is

(17) Z = S

 Z1

0
Z3

 .

We can write

Q = U (αIp ⊕ In−p)U
−1 = U (Ip ⊕ S) (αIp ⊕ In−p)

(
Ip ⊕ S−1

)
U−1.

In view of (14), (16) and (14), (17) we obtain that

A = U (Ip ⊕ S)



0p 0 0 0

0 α−1
αb Is 0 0

Z2 0 −α−1
αb It 0

Z3 0 0 −1
αb In−p−s−t


(
Ip ⊕ S−1

)
U−1

and

A = U (Ip ⊕ S)



0p 0 0 0

Z1
α+1
αb Is 0 0

0 0 −α+1
αb It 0

Z3 0 0 1
αbIn−p−s−t


(
Ip ⊕ S−1

)
U−1,

respectively. One can easily see that the matrices A are the same as (4) and
(5), respectively.
(ii) Let us assume that β ̸= 1. Z = 0 is obtained from (11). Reorganizing (12)
leads directly to the equalities below

(18)(
aαIp + bX

)3 = aαIp + bX,
(
aβIn−p + bW

)3 = aβIn−p + bW,

a2b
(
α2 + αβ + β2

)
Y + ab2 ((2α + β)XY + (α + 2β)YW) + b3

(
X2Y + XYW + YW2

)
= bY.

Clearly, aαIp + bX and aβIn−p + bW are tripotent matrices from the first
two equations in (18). Therefore, there exist q, r ∈ {0, 1, . . . , p}, q + r ≤ p,
s, t ∈ {0, 1, . . . , n− p}, s + t ≤ n − p and nonsingular matrices S1 ∈ Cp,
S2 ∈ C(n−p) such that

(19) X = S1

(
1− aα

b
Iq ⊕

−1− aα

b
Ir ⊕

−aα

b
Ip−q−r

)
S1

−1,

(20) W = S2

(
1− aβ

b
Is ⊕

−1− aβ

b
It ⊕

−aβ

b
In−p−s−t

)
S2

−1.
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Let us write Y as

(21) Y = S1

 Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

S2
−1,

where Y1 ∈ Cq,s and Y5 ∈ Cr,t. Substituting (19), (20), and (21) into the third
equation in (18), it is obtained that (2Y1 ⊕ 2Y5 ⊕−Y9) = 0. So Y turns to

(22) Y = S1

 0 Y2 Y3

Y4 0 Y6

Y7 Y8 0

S2
−1.

Let us define V := U (S1 ⊕ S2). So we obtain

Q = U (αIp ⊕ βIn−p)U
−1 = V

(
S1

−1 ⊕ S2
−1
)
(αIp ⊕ βIn−p) (S1 ⊕ S2)V

−1

= V (αIp ⊕ βIn−p)V
−1.

Taking (19), (20), (22), and Z = 0 into account, we obtain

(23)



1−aα
b

Iq 0 0 0 Y2 Y3

0 −1−aα
b

Ir 0 Y4 0 Y6

0 0 −aα
b

Ip−q−r Y7 Y8 0

0 0 0 1−aβ
b

Is 0 0

0 0 0 0 −1−aβ
b

It 0

0 0 0 0 0 −aβ
b

In−p−s−t


.

The above matrices Q and A provide the necessary and sufficient conditions
for the tripotency of the matrix T. Nevertheless, these are necessary to satisfy
the condition QAQ = AQ but not sufficient. Therefore, the proof should be
continued in more detail according to the values of α and β.

(ii-1) Firstly, let β = 0 and α = 1. Substituting these values of α and β into
(23), clearly, the matrix A is just as in (6).

(ii-2) Let β = 0 and α ̸= 1. From (11), it is clear that X = 0. Then the
equations of (18) turn to

(24) (aαIp)
3
= aαIp, (bW)

3
= bW, a2bα2Y+ ab2αYW+ b3YW2 = bY.

Substituting the value of the scalar β into (20) yields

(25) W = S2

(
1

b
Is ⊕−1

b
It ⊕ 0n−p−s−t

)
S2

−1.
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Let Y′
1, Y

′
2, and Y′

3 denote the first, second, and third block-columns of
S1

−1YS2 in (22). So, we can write

(26) Y = S1

(
Y′

1 Y′
2 Y′

3

)
S2

−1.

Substituting (25) and (26) into the last equation in (24),(
(αa+ 1)αaY′

1 (αa− 1)αaY′
2 (αa+ 1) (αa− 1)Y′

3

)
=
(
0 0 0

)
.

can be obtained. Moreover, it is obvious that αa ∈ {−1, 1} from the first equa-
tion in (24). Therefore, if αa = 1, Y turns to Y = S1

(
0 Y′

2 Y′
3

)
S2

−1 or

if αa = −1, Y reduces to Y = S1

(
Y′

1 0 Y′
3

)
S2

−1. So, these forms of Y
together with (25) constitute the matrix A as in (7) and (8), respectively.

(ii-3) Let β ̸= 0 and α = 1. From (11), it is clear that W = 0. By rewriting the
equations of (18), we obtain

(27)
(aIp + bX)

3
= aIp + bX, (aβIn−p)

3
= aβIn−p,

a2b
(
1 + β + β2

)
Y + ab2 (2 + β)XY + b3X2Y = bY.

Substituting the value of α into (19) gives

(28) X = S1

(
1− a

b
Iq ⊕

−1− a

b
Ir ⊕−a

b
Ip−q−r

)
S1

−1.

Let Y′′
1 , Y′′

2 , and Y′′
3 denote the first, second, and third block rows of

S1
−1YS2 in (22). Then

(29) Y = S1


Y′′

1

Y′′
2

Y′′
3

S2
−1.

Substituting (28) and (29) into the last equation in (27),
aβ (aβ + 1)Y′′

1

aβ (aβ − 1)Y′′
2

(aβ − 1) (aβ + 1)Y′′
3

 =


0

0

0

 .

can be obtained. From the second equation in (27), aβ ∈ {−1, 1}. So Y

reduces to Y = S1

 0
Y′′

2

Y′′
3

S2
−1 when aβ = 1 or Y = S1

 Y′′
1

0
Y′′

3

S2
−1

when aβ = −1. These forms of Y together with (28) constitute the matrix A
as in (9) and (10), respectively.
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(ii-4) Let β ̸= 0 and α ̸= 1. From (11), the matrices X,Y,W are zero. This
means that A is a zero matrix, which contradicts the hypothesis. The first part
of the proof is completed. Conversely, the sufficiency part is obvious.

In the above theorem, the condition QAQ = AQ has been imposed on
the matrices Q and A. If the condition Q2AQ = Q2A is substituted for the
former condition, the equations of (11) turn to

αX = X, βY = Y, αβ2Z = β2Z, β3W = β2W.

Here, as in Theorem 2.1, an investigation can be made depending on the values
of the scalar β. For instance, if β = 1, the matrices X and Z are zero matrices
of appropriate size. Hence, Y and W can be easily found. When β ̸= 1, we
have Y = 0, so the matrices X, Z, and W can be obtained just like before.
Thus, A can be obtained as in the following theorem.

Theorem 2.2. Let T be a linear combination of the form T = aQ +
bA where Q ∈ Cn\ {0} is an {α, β}− quadratic matrix, A ∈ Cn\ {0} is an
arbitrary matrix and β ∈ C, α, a, b ∈ C∗, and α ̸= β. Then Q2AQ = Q2A and
T is a tripotent matrix if and only if there exists a nonsingular matrix V ∈ Cn

such that

Q = V

(
αIp 0
0 βIn−p

)
V−1

and A satisfies one of the following cases.

(a) β = 1,
(a− i) αa = 1,

A = V



0p 0 Y2 Y3

0 α−1
αb Is 0 0

0 0 −α−1
αb It 0

0 0 0 −1
αb In−p−s−t


V−1,

(a− ii) αa = −1,

A = V



0p Y1 0 Y3

0 α+1
αb Is 0 0

0 0 −α+1
αb It 0

0 0 0 1
αbIn−p−s−t


V−1,

being Y1 ∈ Cp,s, Y2 ∈ Cp,t, and Y3 ∈ Cp,(n−p−s−t) arbitrary.
(b) β ̸= 1,
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(b1) β = 0, and α = 1,

A = V



1−a
b Iq 0 0 0 0 0

0 −1−a
b Ir 0 0 0 0

0 0 − a
b Ip−q−r 0 0 0

0 Z2 Z3
1
b Is 0 0

Z4 0 Z6 0 − 1
b It 0

Z7 Z8 0 0 0 0n−p−s−t


V−1,

being Z2 ∈ Cs,r, Z3 ∈ Cs,(p−q−r), Z4 ∈ Ct,q, Z6 ∈ Ct,(p−q−r), Z7 ∈
C(n−p−s−t),q, and Z8 ∈ C(n−p−s−t),r arbitrary.
(b2) β = 0, α ̸= 1, and
(b2 − i) αa = 1,

A = V



0p 0 0 0

0 1
b Is 0 0

Z′
2 0 − 1

b It 0

Z′
3 0 0 0n−p−s−t


V−1,

(b2 − ii) αa = −1,

A = V



0p 0 0 0

Z′
1

1
b Is 0 0

0 0 − 1
b It 0

Z′
3 0 0 0n−p−s−t


V−1,

being Z′
1 ∈ Cs,p, Z′

2 ∈ Ct,p, and Z′
3 ∈ C(n−p−s−t),p arbitrary.

(b3) β ̸= 0, α = 1, and
(b3 − i) aβ = 1,

A = V



β−1
βb Iq 0 0 0

0 −β−1
βb Ir 0 0

0 0 − 1
βbIp−q−r 0

0 Z′′
2 Z′′

3 0n−p


V−1,
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(b3 − ii) aβ = −1,

A = V



β+1
βb Iq 0 0 0

0 −β+1
βb Ir 0 0

0 0 1
βbIp−q−r 0

Z′′
1 0 Z′′

3 0n−p


V−1,

being Z′′
1 ∈ C(n−p),q, Z′′

2 ∈ C(n−p),r, and Z′′
3 ∈ C(n−p),(p−q−r) arbitrary.

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1. In the
examples below, we try to find the coefficients of the matrices Q and A in the
linear combination T in Theorems 2.1 and 2.2 for the matrix T to be tripotent.

Example 2.3. Let

Q =


−1 0 0 0 0
2 1 −2 2 0
2 0 −3 4 0
2 0 −2 3 0
0 0 −4 4 1


and

A1 =


0 0 0 0 0
1 1 −1 1 0
1 0 −1 2 0
1 0 −1 2 0
0 0 −2 2 1

 , A2 =


0 0 0 0 0
9 −4 −1 12 −4
7 −3 −1 9 −3
7 −3 −1 9 −3
8 −4 −2 11 −3

 .

It is obvious that Q is a {1,−1}–quadratic matrix and QAiQ = AiQ, i = 1, 2.
If T1

3 = T1 and T2
3 = T2 are solved, then the pairs of all ordered pair (ai, bi),

are obtained as (a1, b1) ∈ {(−1, 1) , (−1, 2) , (1,−2) , (1,−1)} and (a2, b2) ∈ ∅.
Although A1 satisfies the aforementioned form of the matrix A, A2 does not
match the desired form. These can be verified with (for example)

V =


0 0 0 0 1
1 1 −2 1 0
1 0 −1 2 1
1 0 −1 1 0
1 −1 −1 2 2


that diagonalize the matrix Q.
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Example 2.4. Let Q =

 2 −1 1
−1 2 −1
−1 1 0

. Let us find all a ∈ C∗ and all

A ∈ C3 such that Q2AQ = Q2A and aQ+A is tripotent. Note that

Q = V

 2 0 0
0 1 0
0 0 1

V−1 and V =

 −1 0 1
1 1 0
1 1 −1

 .

Let β = 1 and α = 2. Then, from part (a) of Theorem 2.2, we get a =
1/α = 1/2 or a = −1/α = −1/2 where p = 1, s ∈ {0, 1, 2}, t ∈ {0, 1, 2}, and
s + t ≤ 2. Furthermore, depending on the appearing and disappearing blocks
of V−1AV, we can write the following possible cases.

If a = 1/2 (αa = 1),

t/s s = 0 s = 1 s = 2

t = 0


0 c1 c2

0 −1/2 0

0 0 −1/2




0 0 c3

0 1/2 0

0 0 −1/2




0 0 0

0 1/2 0

0 0 1/2



t = 1


0 c4 c5

0 −3/2 0

0 0 −1/2




0 0 c6

0 1/2 0

0 0 −3/2



t = 2


0 c7 c8

0 −3/2 0

0 0 −3/2



where ci is an arbitrary complex number, i = 1, 2, . . . , 8.

If a = −1/2 (αa = −1),
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t/s s = 0 s = 1 s = 2

t = 0


0 d1 d2

0 1/2 0

0 0 1/2




0 d3 d4

0 3/2 0

0 0 1/2




0 d5 d6

0 3/2 0

0 0 3/2



t = 1


0 0 d7

0 −1/2 0

0 0 1/2




0 d8 0

0 3/2 0

0 0 −1/2



t = 2


0 0 0

0 −1/2 0

0 0 −1/2


where di is an arbitrary complex number, i = 1, 2, . . . , 8.

Example 2.5. For the matrices

Q1 =


1 0 3/2 −3/2
0 1 3/2 −3/2
0 0 −1/2 3/2
0 0 0 1

 , A1 =


−3 0 −3 3
2 −1 3 −5

−1 0 0 −2
−1 0 0 −2


and

Q2 =


3/2 2 3 −1
0 1 0 0
0 0 1 0

1/2 2 3 0

 , A2 =


3 3 2 −3
4 14 18 −4

−2 −6 −7 2
4 12 16 −4


linear combinations −2Q1 −A1 and −2Q2 +A2 become tripotent. These can
be considered as examples for the parts (a− i) of Theorem 2.1 and (a− ii) of
Theorem 2.2 together with

V1 =


−1 1 0 0
−1 0 −1 −2
1 1 0 −1
0 1 0 −1

 and V2 =


−1 0 −2 −2
0 2 2 1
0 −1 −1 0

−1 1 0 1

 ,

respectively. Similarly, examples for the other parts of Theorem 2.1 and The-
orem 2.2 can be given as above. For example, the matrices given by (30), (31)
and (32), (33) provide that the linear combinations Q + 2A, 3Q − 2A and
3Q−2A, − 1

2Q−2A are tripotent. It follows that they correspond to the parts
(b1), (b2 − i) of Theorem 2.1 and (b1), (b2 − ii) of Theorem 2.2, respectively.



362 Nurgül Kalaycı and Murat Sarduvan

(30)



−1 0 1 −1 1 −1

−2 1 1 0 2 0

−1 1 1 1 −1 0

1 0 0 1 −2 −1

2 −1 0 −1 −2 −1

1 0 −1 1 1 −2


,



0 3 −4 5 −1 −2

2 −5 6 −6 0 2

0 −1 3 −3 1 1

−2 4 −3 3 1 −1

−4 12 −13 14 0 −5

0 −3 4 −5 1 2


,



6 −17 33/2 −33/2 −1/2 6

7 −37/2 31/2 −15 −2 9/2

2 −4 1/2 1/2 −5/2 −1

−9/2 13 −27/2 14 −1/2 −5

−9/2 11 −17/2 8 3/2 −2

−5 14 −27/2 27/2 1/2 −5


;

(31)(
0 −1 −2 −1

−1 2 0 0
1 −1 −1 −1
0 −1 −1 0

)
,

(
0 0 0 0

2/3 −1/3 −2/3 −2/3
−2/3 1/3 2/3 2/3

0 0 0 0

)
,

(
−3/2 3/2 3/2 5/2

3 −2 −2 −4
−3 2 2 9/2
−1 1 1 3/2

)
;

(32)



0 2 2 0 −1 0

0 1 1 0 0 2

0 0 −2 0 0 1

1 1 1 −1 0 −2

−1 −1 1 2 0 2

0 −1 0 −1 1 1


,



−8 10 −12 −8 −8 −8

−4 5 −6 −4 −4 −4

−2 2 −2 −2 −2 −2

2 −2 4 4 3 2

0 0 −2 −2 −1 0

5 −6 7 5 5 5


,



−41/2 25 −31 −23 −22 −21

11/2 −11/2 27/2 27/2 19/2 11/2

4 −5 10 8 6 4

−59/2 69/2 −91/2 −35 −32 −59/2

91/2 −105/2 131/2 101/2 95/2 91/2

15/2 −9 16 29/2 23/2 8


;

(33)(
1 −1 0 1
1 0 0 1
0 −2 1 1
1 1 −2 0

)
,

(
6 −2 −4 −2
6 −2 −4 −2
0 0 0 0
6 −2 −4 −2

)
,

( −1/2 1/2 0 0
−3 1 2 1
5/2 0 −5/2 −3/2
−7/2 1/2 3 2

)
.
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The matrices in (30), (31), (32), (33) are given in the order of V, Q, A.
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