DOI QR코드

DOI QR Code

Geoacoustic Model of Erosional Shelf Ridges in the Mid-eastern Yellow Sea

  • Woo Hun Ryang (Division of Science Education and Institute of Fusion Science, Jeonbuk National University) ;
  • Seong-Pil Kim (Marine Geology & Energy Research Division, Korea Institute of Geoscience and Mineral Resources)
  • Received : 2024.07.16
  • Accepted : 2024.08.18
  • Published : 2024.08.31

Abstract

In the mid-eastern part of the Yellow Sea, large-scale shelf ridges originated from erosion on sand-mud successions that have been presently eroded by strong tidal currents. A three-layered in situ geoacoustic model is provided down to 50 m for the subbottom sedimentary succession of a 45 m water depth using the Hamilton method. The succession is divisible into two-type units of Type-A and Type-B using high-resolution seismic profiles with a deep-drilled YSDP-104 core of 44.0 m in depth below the seafloor. Type-A unit mainly comprises sandy or gravelly sediments, whereas Type-B unit mostly consists of tidal muddy sediments with some thinner sand beds. P-wave speed values are positively compatible with the mean grain size and sediment type of the core sediments. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor. The detailed geoacoustic model contributes to simulating sound transmission through the sedimentary successions in erosional shelf ridges of variable geoacoustic properties distributed in shallow-water environments of the mid-eastern Yellow Sea.

Keywords

Acknowledgement

The original data of marine geophysics and geology were acquired from the Yellow Sea Drilling Program for Studies on Quaternary Geology (KR-96(T)-18). We are grateful to anonymous reviewers for their critical and helpful comments. WHR thanks Ms. Kang, Sol-Ip (Jeonbuk National University) for working on the computer graphics. This research was supported by research funds from Jeonbuk National University (2024. 3.-2026. 2.) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1F1A1063126). SPK was supported by the project of development of the integrated geophysical survey and real-scale data processing technologies for 3D high-resolution imaging of the marine subsurface (GP2020-023) of KIGAM.

References

  1. Berne, S., Lericolais, G., Marsset, T., Bourillet, J.F., and Batist, M.D., 1998, Erosional offshore sand ridges and lowstand shorefaces: examples from tide- and wave-dominated environments of France. Journal of Sedimentary Research, 68, 540-555.
  2. Berne, S., Trentesaux, A., Stolk, A., Missiaen, T., and de Batist, M., 1994, Architecture and long term evolution of a tidal sandbank: The Middelkerke Bank (southern North Sea). Marine Geology 121, 57-72.
  3. Boyce, R.E., 1976, Definition and laboratory techniques of compressional sound velocity parameter and wet-water, wet bulk density, and porosity parameter by gravimetric and gamma ray attenuation techniques. Initial Reports of the Deep Sea Drilling Project 33, U.S. Government Printing Office, Washington, DC, p. 931-958.
  4. Carey, W.M., Doutt, J., Evans, R.B., and Dillman, L.M., 1995, Shallow-water sound transmission measurements on the New Jersey continental shelf. IEEE Journal of Oceanic Engineering, 20, 321-336.
  5. Cederberg, R.J., Siegmann, W.L., and Carey, W.M., 1995, Influence of geoacoustic modeling on predictability of low-frequency propagation in range-dependent, shallow-water environments. Journal of the Acoustical Society of America, 97, 2754-2766.
  6. Chough, S.K., 2013, Geology and sedimentary of the Korean Peninsula. London, Elsevier, 363 p.
  7. Chough, S.K., Kim, J.W., Lee, S.H., Shinn, Y.J., Jin, J.H., Suh, M.C., and Lee, J.S., 2002, High-resolution acoustic characteristics of epicontinental sea deposits, central-eastern Yellow Sea. Marine Geology, 188, 317-331.
  8. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine geology of Korean seas. Elsevier, Amsterdam, 313 p.
  9. Cummings, D.I., Dalrymple, R.W., Choi, K, and Jin, J.H., 2016, The tide-dominated Han river delta, Korea, Elsevier, Amsterdam, Netherlands, 376 p.
  10. Dalrymple, R. W. and Hoogendoorn, E. L., 1997, Erosion and Deposition on Migrating Shoreface-attached Ridges, Sable Island, Eastern Canada. Geoscience Canada, 24, 25-36.
  11. de Swart, H.E. and Yuan, B., 2019, Dynamics of offshore tidal sand ridges, a review. Environmental Fluid Mechanics, 19, 1047-1071.
  12. Duran, R., Guillen, J., Rivera, J., Lobo, F. J., Munoz, A., Fernandez-Salas, L. M., and Acosta, J., 2018, Formation, evolution and present-day activity of offshore sand ridges on a narrow, tideless continental shelf with limited sediment supply. Marine Geology, 397, 93-107.
  13. Folk, R.L., 1968, Petrology of sedimentary rocks. Hemphill's, Austin, USA, 170 p.
  14. Folk, R.L. and Ward, W.C., 1957, A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3-27.
  15. Hamilton, E.L., 1971, Predictions of in-situ acoustics and elastic properties of marine sediments. Geophysics, 36, 266-284.
  16. Hamilton, E.L., 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1340.
  17. Hamilton, E.L., 1987, Acoustic properties of sediments. In Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds.), Acoustics and ocean bottom. Cosejo Superior de Investigaciones Cientificas, Madrid, Spain, 3-58.
  18. Hampton, L., 1974, Physics of sound in marine sediments. Plenum Press, New York, 569 p.
  19. Hovem, J.M., Richardson, M.D., and Stoll, R.D., 1990, Shear waves in marine sediments. Kluwer Academic Publications, Dordrecht, 593 p.
  20. Jackson, D.R. and Richardson, M.D., 2007, High-frequency seafloor acoustics. Springer, New York, USA, 616 p.
  21. Jin, J.H., 2001, A sedimentological study of long sediment cores in the eastern Yellow Sea. Unpublished Ph.D. dissertation, Seoul National University, Seoul, Korea, 176 p.
  22. Jin, J.H. and Chough, S.K., 1998, Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Marine Geology, 149, 79-92.
  23. Jin, J.H. and Chough, S.K., 2002, Erosional shelf ridges in the mid-eastern Yellow Sea. Geo-Marine Letters, 21, 219-225.
  24. Jin, J.H., Chough, S.K., and Ryang, W.H., 2002, Sequence aggradation and systems tracts partitioning in the ME Yellow Sea: roles of glacio-eustasy, subsidence and tidal dynamics. Marine Geology, 184, 249-271.
  25. Johnson, H.D. and Baldwin, C.T., 1996, Shallow clastic seas. In Reading, H.D. (ed.), Sedimentary environments: processes, facies and stratigraphy, Blackwell Publishing, Malden, USA, 232-280.
  26. Jung, W.Y., Suk, B.C., Min, G.H., and Lee, Y.K., 1998, Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Marine Geology, 151, 73-88.
  27. Katsnelson, B., Petnikov, V., and Lynch, J., 2012, Fundamentals of shallow water acoustics. Springer, New York, USA, 540 p.
  28. KIGAM (Korea Institute of Geology, Mineral and Materials), 2014, Geological characterization of recent muddy sediment for reservoir potential, and in-situ analysis of shallow gas. KIGAM Research Report GP2012-005-2014(3), 370 p.
  29. KIGAM (Korea Institute of Geology, Mineral and Materials), 2017, Study on the coastal geohazard factors analysis, west coast, Korea. Oceans and Fisheries R&D Report R&D/2011-0016, 1161 p.
  30. KIGAM (Korea Institute of Geology, Mining and Materials), 1996, Yellow Sea drilling program for studies on Quaternary geology (Analyses of YSDP-102, YSDP-103, YSDP-104, YSDP-105 cores). KIGAM Research Report KR-96(T)-18, 595 p.
  31. Kwon, H., Choi, J.W., Ryang, W.H., Son, S.U., and Jung, S.K., 2019, Measurements of mid-frequency bottom-interacting signals and geoacoustic inversion in Jinhae Bay, southeast Korea. Journal of the Acoustical Society of America, 145, 1205-1211.
  32. Lee, G.S., Kim, D.C., Yoo, D.G., and Yi, H.I., 2014, Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea. Quaternary International, 344, 109-124.
  33. Lee, H.J. and Yoon, S.H., 1997, Development of stratigraphy and sediment distribution in the northeastern Yellow Sea during Holocene sea-level rise. Journal of Sedimentary Research, 67, 341-349.
  34. Li, X.S., Zhao, Y.X., Feng, Z.B., Liu, C.G., Xie, Q.H., and Zhou, Q.J., 2016, Quaternary seismic facies of the South Yellow Sea shelf: depositional processes influenced by sea-level change and tectonic controls. Geological Journal, 51, 77-95.
  35. Liu, S., Li, P., Feng, A., Du, J., Gao, W., Xu, Y., Yu, X, Li, P., and Nan, X., 2016, Seismic and core investigation on the modern Yellow River Delta reveals the development of the uppermost fluvial deposits and the subsequent transgression system since the postglacial period. Journal of Asian Earth Sciences, 128, 158-180.
  36. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans. Journal of the Acoustical Society of America, 70, 807-812.
  37. Marsset, T., Xia, D., Berne, S., Liu, Z., Bourillet, J.F., and Wang, K., 1996, Stratigraphy and sedimentary environments during the late Quaternary in the Eastern Bohai Sea (North China Platform). Marine Geology, 135, 97-114.
  38. Plint, A.G., 2010, Wave- and storm-dominated shoreline and shallow-marine systems. In James, N.P. and Dalrymple, R.W. (eds.), Facies models 4. Geological Association of Canada, p. 167-199.
  39. Ryang, W.H., Jin, J.H., and Hahn, J., 2019a, Geoacoustic model at the YSDP-105 long-core site in the mid-eastern Yellow Sea. Journal of the Korean Earth Sciences Society, 40, 24-36.
  40. Ryang, W.H., Kwon, H., Choi, J.W., Kim, K.O., and Hahn, J., 2019b, Geoacoustic model of coastal bottom strata off the northwestern Taean Peninsula in the Yellow Sea. Journal of the Korean Earth Sciences Society, 40, 428-435.
  41. Ryang, W.H., Simms, A.R., Yoon, H.H., Chun, S.S., and Kong, G.S., 2022, Last interglacial sea-level proxies in the Korean Peninsula. Earth System Science Data, 14, 117-142.
  42. Shinn, Y.J., Chough, S.K., Kim, J.W., and Woo, J., 2007, Development of depositional systems in the southeastern Yellow Sea during the post glacial transgression. Marine Geology, 239, 59-82.
  43. Snedden, J.W. and Dalrymple, R.W., 1999, Modern shelf sand ridges: from historical perspective to a unified hydrodynamic and evolutionary model. In Bergman, K.M. and Snedden, J.W. (eds.), Isolated shallow marine sand bodies: sequence stratigraphic analysis and sedimentologic interpretation, SEPM 64, p. 13-28.
  44. Stoll, R.D., 1989, Sediment acoustics. Springer-Verlag, Berlin, 155 p.
  45. Yoo, D.G., Chang, T.S., Lee, G.S., Kim, G.Y., Kim, S.P., and Park, S.C., 2016a, Late Quaternary seismic stratigraphy in response to postglacial sea-level rise at the mid-eastern Yellow Sea. Quaternary International, 392, 125-136.
  46. Yoo, D.G., Lee, G.S., Kim, G.Y., Kang, N.K., Yi, B.Y., Kim, Y.J., Chun, J.H., and Kong, G.S., 2016b, Seismic stratigraphy and depositional history of late Quaternary deposits in a tide-dominated setting: an example from the eastern Yellow Sea. Marine and Petroleum Geology, 73, 212-227.
  47. Yoon, H.H., Ryang, W.H., Chun, S.S., Simms, A.R., Kim, J.C., Chang, T.S., Yoo, D.G., and Hong, S.H., 2023, Coastal switching of dominant depositional processes driven by decreasing rates of Holocene sea-level rise along the macrotidal coast of Gochang, SW Korea. Journal of Sedimentary Research, 93, 20-36.
  48. Zhao, W., Zhang, X., Wang, Z., Chen, S., Wu, Z., and Mi, B., 2018, Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea, China. Quaternary International, 468, 4-13.
  49. Zhou, J-X., Zhang, X-Z., Rogers, P.H., and Jarzynski, J., 1987, Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. Journal of the Acoustical Society of America, 82, 2068-2074.