DOI QR코드

DOI QR Code

Boundary discontinuous Fourier solution of thin Levy type flat and doubly curved shallow shells

  • Ahmet Sinan Oktem (Department of Mechanical Engineering, Gebze Technical University) ;
  • Ilke Algula (Department of Mechanical Engineering, Gebze Technical University)
  • Received : 2021.10.01
  • Accepted : 2024.08.29
  • Published : 2024.09.10

Abstract

This study presents a static analysis of thin shallow cylindrical and spherical panels, as well as plates (which are a special case of shells), under Levy-type mixed boundary conditions and various loading conditions. The study utilizes the boundary discontinuous double Fourier series method, where displacements are expressed as trigonometric functions, to analyze the system of partial differential equations. The panels are subjected to a simply supported type 3 (SS3) boundary condition on two opposite edges, while the remaining two edges are subjected to clamped type 3 (C3) boundary conditions. The study presents comprehensive tabular and graphical results that demonstrate the effects of curvature on the deflections and moments of thin shallow shells made from symmetric and antisymmetric cross-ply laminated composites, as well as isotropic steel materials. The proposed model is validated through comparison with existing literature, and the convergence characteristics are demonstrated. The changing trends of displacements and moments are explained in detail by investigating the effect of various parameters, such as stacking lamination, material types, curvature, and loading conditions.

Keywords

References

  1. Atashipour, S.R., Girhammar, U.A. and Al-Emrani, M. (2017), "Exact Levy-type solutions for bending of thick laminated orthotropic plates based on 3-D elasticity and shear deformation theories", Compos. Struct., 163, 129-151. http://dx.doi.org/10.1016/j.compstruct.2016.12.026.
  2. Bahadur, R. Upadhyay, A.K. and Shukla, K.K. (2017), "Static analysis of singly and doubly curved panels on rectangular plan-form", Steel Compos. Struct., 24(6), 659-670. https://doi.org/10.12989/scs.2017.24.6.659.
  3. Chaudhuri, R.A. (1989), "On boundary-discontinuous double Fourier series solution to a system of completely coupled P.D.E.'s", Int. J. Eng. Sci., 27(9), 1005-1022. https://doi.org/10.1016/0020-7225 (89), 90080-3.
  4. Chaudhuri, R.A. (2002), "On the roles of complementary and admissible boundary constraints in Fourier solutions to boundary-value problems of completely coupled rth order P.D.E.'s.", J. Sound Vibr., 251(2), 261-313. https://doi.org/10.1006/jsvi.2001.3913.
  5. Chaudhuri, R.A. and Abu-Arja, K.R. (1988), "Exact solution of shear flexible doubly curved anti-symmetric angle-ply shells", Int. J. Eng. Sci., 26(6), 587-604. https://doi.org/10.1016/0020-7225(88)90056-0.
  6. Chaudhuri, R.A. and Abu-Arja, K.R. (1991), "Static analysis of moderately thick finite anti-symmetric angle ply cylindrical panels and shells", Int. J. Solids Struct., 28(1), 1-15. https://doi.org/10.1016/0020-7683(91)90044-G.
  7. Chaudhuri, R.A. and Kabir, H.R.H. (1989), "On analytical solutions to boundary-value problems of doubly-curved moderately-thick orthotropic shells", Int. J. Eng. Sci., 27(11), 1325-1336. https://doi.org/10.1016/0020-7225(89)90057-8.
  8. Chaudhuri, R.A. and Kabir, H.R.H. (1992), "A boundary-continuous displacement-based Fourier analysis of laminated doubly-curved panels using classical shallow shell theories", Int. J. Eng. Sci., 30(11), 1647-1664. https://doi.org/10.1016/0020-7225(92)90133-2.
  9. Chaudhuri, R.A. and Kabir, H.R.H. (1994), "Static and dynamic analysis of finite cross-ply doubly curved panels using classical shallow shell theories", Compos. Struct., 28(1), 73-91. https://doi.org/10.1016/0263-8223(94)90007-8.
  10. Chaudhuri, R.A., Oktem, A.S. and Soares, G.C. (2015), "Levy-type boundary fourier analysis of thick clamped hyperbolic-paraboloidal cross-ply panels", AIAA, 53(1), 140-149. https://doi.org/10.2514/1.J052986.
  11. Daynes, S. and Weaver, P. (2011), "A morphing trailing edge device for a wind turbine", J. Intell. Mater. Syst. Struct., 23(6), 691-701. https://doi.org/10.1177/1045389X12438622.
  12. Daynes, S., Weaver, P. and Trevarthen, J. (2011), "A morphing composite air inlet with multiple stable shapes", J. Intell. Mater. Syst. Struct., 22(9), 961-973. https://doi.org/10.1177/1045389X11399943.
  13. Green, A.E. (1944), "Double Fourier series and boundary value problems", Proceedings Cambridge Phil. Soc., 40, 222-228. https://doi.org/10.1017/S0305004100018375.
  14. Groh, R.M.J. and Weaver, P.M. (2015), "Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells", Compos. Struct., 120, 231-245. http://dx.doi.org/10.1016/j.compstruct.2014.10.006.
  15. Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Progress Aeros. Sci., 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
  16. Hobson, E.W. (1950), The Theory of Functions of a Real Variable, Vol. II, Harren Press, Washington, D.C.
  17. Huang, Y. and Yuan, D.C. (2006), "Static analysis of symmetric angle-ply laminated plates by analytical method", AIAA, 44(3), 667-669. https://doi.org/10.2514/1.15286.
  18. Kabir, H.R.H. (1991), "Boundary value problems of thin, moderately deep cross-ply laminated cylindrical shells", Compos. Struct., 18(4), 297-310. https://doi.org/10.1016/0263-8223(91)90001-F.
  19. Kabir, H.R.H. and Chaudhuri, R.A. (1993), "A direct Fourier approach for analysis of thin finite-dimensional cylindrical panels", Comput. Struct., 46(2), 279-287. https://doi.org/10.1016/0045-7949(93)90192-G.
  20. Kumari, P. and Kar, S. (2019), "Static behavior of arbitrarily supported composite laminated cylindrical shell panels: An analytical 3D elasticity approach", Compos. Struct., 207, 949-965. https://doi.org/10.1016/j.compstruct.2018.09.035.
  21. Li, H., Liu, N., Pang, F., Du, Y. and Li, S. (2018), "An accurate solution method for the static and vibration analysis of functionally graded reissner-mindlin rectangular plate with general boundary conditions", Shock Vib., 2018(1), https://doi.org/10.1155/2018/4535871, 1-21.
  22. Li, M., Yan, R., Xu, L. and Soares, C.G. (2021), "A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates", Compos. Struct., 261, 113560. https://doi.org/10.1016/j.compstruct.2021.113548-113560.
  23. Liew, K.M., Zhao, X. and Ferreira, A.J. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
  24. Mantari, J.L. and Soares, C.G. (2012), "Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory", Compos. Struct., 94(8), 2640-2656. https://doi.org/10.1016/j.compstruct.2012.03.018.
  25. Mantari, J.L., Oktem, A.S. and Soares, G.C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  26. Oktem, A.S. and Alankaya, V. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel Compos. Struct., 20(5), 1043-1066. https://doi.org/10.12989/scs.2016.20.5.1043.
  27. Oktem, A.S. and Chaudhuri, R.A. (2007a), "Fourier analysis of thick cross ply Levy type clamped doubly-curved panels", Compos. Struct., 80(4), 489-503. https://doi.org/10.1016/j.compstruct.2006.05.028.
  28. Oktem, A.S. and Chaudhuri, R.A. (2007b), "Fourier solution to a thick cross-ply Levy type clamped plate problem", Compos. Struct., 79(4), 481-492. https://doi.org/10.1016/j.compstruct.2005.09.012.
  29. Oktem, A.S. and Chaudhuri, R.A. (2007c), "Levy type Fourier analysis of thick cross-ply doubly-curved panels", Compos. Struct., 80(4), 475-488. https://doi.org/10.1016/j.compstruct.2006.05.020.
  30. Oktem, A.S. and Chaudhuri, R.A. (2007d), "Levy type analysis of cross-ply plates based on higher-order theory", Compos. Struct., 78(2), 243-253. https://doi.org/10.1016/j.compstruct.2005.09.012.
  31. Oktem, A.S. and Chaudhuri, R.A. (2008a), "Boundary discontinuous fourier analysis of thick cross-ply clamped plates", Compos. Struct., 82, 539-548. https://doi.org/10.1016/j.compstruct.2007.02.001.
  32. Oktem, A.S. and Chaudhuri, R.A. (2008b), "Effect of inplane boundary constraints on the response of thick general (unsymmetric) cross-ply plates", Compos. Struct., 83(1), 1-12. https://doi.org/10.1016/j.compstruct.2007.03.002.
  33. Oktem, A.S. and Chaudhuri, R.A. (2009), "Sensitivity of the response of thick doubly curved cross-ply panels to edge clamping", Compos. Struct., 87(4), 293-306. https://doi.org/10.1016/j.compstruct.2008.01.014.
  34. Oktem, A.S. and Soares, G.C. (2011), "Boundary discontinuous Fourier solution for plates and doubly curved panels using a higher order theory", Compos. Part B-Eng., 42(4), 842-85. https://doi.org/10.1016/j.compositesb.2011.01.014.
  35. Oktem, A.S. and Soares, G.C. (2012), "Higher-Order theory based fourier analysis of cross-ply plates and doubly curved panels", J. Compos. Mater., 46(21), 2675-2694. https://doi.org/10.1177/0021998311431641.
  36. Qatu, M., Asadi, E. and Wang, W. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(3), 61-86. https://doi.org/10.4236/ojcm.2012.23009.
  37. Reddy, J.N. and Liu C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23, 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.
  38. Ugural, A.C. (1981), Stresses in Plates and Shells, McGraw-Hill College.
  39. Whitney, J.M. and Leissa, A.W. (1970), "Analysis of a simply supported laminated anisotropic rectangular plate", AIAA, 8, 28-33. https://doi.org/10.2514/3.5601.
  40. Zine, A., Tounsi, A. and Draiche, K. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.