DOI QR코드

DOI QR Code

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian (Department of Civil Engineering and Construction Management, California State University) ;
  • Omid Parvizi (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Mojtaba Gorji Azandariani (Centre for Infrastructure Engineering, Western Sydney University) ;
  • David Boyajian (Department of Civil Engineering and Construction Management, California State University)
  • Received : 2024.06.05
  • Accepted : 2024.08.19
  • Published : 2024.09.10

Abstract

This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

Keywords

References

  1. Ajrab, J.J., Pekcan, G. and Mander, J.B. (2004), "Rocking wall-frame structures with supplemental tendon systems", J. Struct. Eng., 130(6), 895-903. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(895.
  2. Akbari, A., Massumi, A. and Grigorian, M. (2023), "Full Text PDF Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores", Steel Compos. Struct., 46(5), 621. https://doi.org/10.12989/SCS.2023.46.5.621.
  3. Al-Subaihawi, S. and Pessiki, S. (2019), "Static pushover response of spring anchored unbonded post-tensioned rocking systems", Eng. Struct., 200, 109582. https://doi.org/10.1016/j.engstruct.2019.109582.
  4. Aldeka, A.B., Chan, A.H.C. and Dirar, S. (2014), "Response of non-structural components mounted on irregular RC buildings: comparison between FE and EC8 predictions". Earthq. Struct., 6(4), 351. https://doi.org/10.12989/EAS.2014.6.4.
  5. BHRC-IS2800 (2014), Road, Housing and Urban Denelopment Research Center, Tehran.
  6. Browne, M., Carr, A. and Bull, D. (2006), "The analysis of reinforced concrete rocking wall behavior", 2006 NZSEE Conf.
  7. Cao, H.-Y., Pan, P., Ye, L.-P., Qu, Z. and Liu, M.-X. (2011), "Seismic performance analysis of RC frame rocking-wall structure system", Jianzhu Kexue Yu Gongcheng Xuebao(Journal Archit. Civ. Eng., 28(1), 64-69.
  8. Code, U.B. (1997), "UBC 97, Code for Seismic Design of Buildings (1997 Edition)", Struct. Eng. Des., 2.
  9. Committee, A.C.I. (1999), "Building code requirements for structural concrete:(ACI 318-99); and commentary (ACI 318R-99)", American Concrete Institute.
  10. Davani, M.R., Hatami, S. and Zare, A. (2016), "Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis", Steel Compos. Struct., 21(6), 1369. https://doi.org/10.12989/SCS.2016.21.6.1369.
  11. Deierlein, G., Krawinkler, H., Ma, X., Eatherton, M., Hajjar, J., Takeuchi, T., Kasai, K. and Midorikawa, M. (2011), "Earthquake resilient steel braced frames with controlled rocking and energy dissipating fuses", Steel Constr., 4(3), 171-175. https://doi.org/10.1002/stco.201110023.
  12. Diamantopoulos, S. and Fragiadakis, M. (2019), "Seismic response assessment of rocking systems using single degree-of-freedom oscillators", Earthq. Eng. Struct. Dyn., 48(7), 689-708. https://doi.org/10.1002/eqe.3157.
  13. Ercolino, M., Ricci, P., Magliulo, G. and Verderame, G.M. (2016), "Influence of infill panels on an irregular RC building designed according to seismic code", Earthq. Struct., 10(2), 261. https://doi.org/10.12989/EAS.2016.10.2.261.
  14. FEMA 356. (2000), Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, DC, USA.
  15. Habibi, A., Gholami, R. and Izadpanah, M. (2019), "Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis", Earthq. Struct., 16(6), 655. https://doi.org/10.12989/EAS.2019.16.6.655.
  16. Imran, I., Siringoringo, D.M. and Rainayana, S.S. (2024), "Seismic evaluation and retrofit of a typical reinforced concrete hospital building in Indonesia with DCFP isolation system", Structures, 64, 106593. https://doi.org/10.1016/J.ISTRUC.2024.106593.
  17. INCE, G. (2022), "Effect of link length in retrofitted RC frames with Y eccentrically braced frame", Steel Compos. Struct., 43(5), 553. https://doi.org/10.12989/SCS.2022.43.5.553.
  18. Karimiyan, S., Moghadam, A.S., Karimiyan, M. and Kashan, A. H. (2013), "Seismic collapse propagation in 6-story RC regular and irregular buildings", Earthq. Struct., 5(6), 753. https://doi.org/10.12989/EAS.2013.5.6.753.
  19. Kurama, Y.C. (2002), "Hybrid post-tensioned precast concrete walls for use in seismic regions", PCI J., 47(5), 36-59. https://doi.org/10.15554/pcij.09012002.36.59.
  20. Landi, L., Pollio, B. and Diotallevi, P.P. (2014), "Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames", Struct. Eng. Mech., 51(3), 433. https://doi.org/10.12989/SEM.2014.51.3.433.
  21. Lee, H.S., Jung, D.W., Lee, K.B., Kim, H.C. and Lee, K. (2011), "Shake-table responses of a low-rise RC building model having irregularities at first story", Struct. Eng. Mech., 40(4), 517. https://doi.org/10.12989/SEM.2011.40.4.517.
  22. Li, Y.-W., Li, G.-Q., Jiang, J. and Wang, Y.-B. (2019), "Experimental study on seismic performance of RC frames with Energy-Dissipative Rocking Column system", Eng. Struct., 194, 406-419. https://doi.org/10.1016/j.engstruct.2019.05.052.
  23. Li, Y.-W., Yam, M. C. H. and Cao, K. (2020), "Seismic collapse risk of RC frames with irregular distributed masonry infills", Struct. Eng. Mech., 76(3), 421. https://doi.org/10.12989/SEM.2020.76.3.421.
  24. Marriott, D., Pampanin, S., Bull, D. and Palermo, A. (2008), "Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions", New Zeal. Soc. Earthq. Eng. Conf., New Zealand, 11-13.
  25. Marriott, D., Pampanin, S., Bull, D.K. and Palermo, A. (2007), "Improving the seismic performance of existing reinforced concrete buildings using advanced rocking wall solutions", New Zeal. Soc. Earthq. Eng. 2007 Conf. (NZSEE 2007), New Zealand.
  26. Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. and Jeremic, B. (2006), "Open system for earthquake engineering simulation", User Command. Manual, Pacific Earthq. Eng. Res. Center, Berkeley, Calif.
  27. Meglio, E., Longobardi, G. and Formisano, A. (2023), "Integrated seismic-energy retrofit systems for preventing failure of a historical RC school building: Comparison among metal lightweight exoskeleton solutions", Eng. Fail. Anal., 154, 107663. https://doi.org/10.1016/J.ENGFAILANAL.2023.107663.
  28. Mohammadzadeh, B. and Kang, J. (2021), "Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation", Steel Compos. Struct., 39(1), 065. https://doi.org/10.12989/SCS.2021.39.1.065.
  29. Nazari, M. and Sritharan, S. (2019), "Seismic design of precast concrete rocking wall systems with varying hysteretic damping", PCI J., 64(5), 58-76. https://doi.org/10.15554/PCIJ64.5-04.
  30. Nezhad, M.E. and Poursha, M. (2015), "Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities", Earthq. Struct., 9(2), 353. https://doi.org/10.12989/EAS.2015.9.2.353.
  31. Nicknam, A. and Filiatrault, A. (2012), "Seismic design and testing of propped rocking wall systems", Proc. 15th World Conf. Earthq. Eng.
  32. Nie, W., Liu, S., Lu, S., Wang, W., Liang, T., Nie, L., Wang, L. and Zhang, W. (2019), Seismic Performance Analysis of Frame-Rocking Wall Structures.
  33. Paulay, T. (1981), University of canterbury, Department of Civil Engineering.
  34. Paulay, T. and Priestley, M.J.N. (1992), 10.1002/9780470172841. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470172841.
  35. Qu, Z., Wada, A. and Ye, L. (2011), "Seismic retrofit of frame structures using rocking wall system", Jianzhu Jiegou Xuebao (Journal Build. Struct., 32(9), 11-19.
  36. Sohaei, S., TahamouliRoudsari, M. and Memarzadeh, P. (2024), "Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns", Steel Compos. Struct., 51(3), 305. https://doi.org/10.12989/SCS.2024.51.3.305.
  37. Wada, A., Qu, Z., Ito, H., Motoyui, S., Sakata, H. and Kasai, K. (2009), "Seismic retrofit using rocking walls and steel dampers, ATC", SEI Conf. Improv. Seism. Perform. Exist. Build. other Struct.
  38. Wada, A., Qu, Z., Motoyui, S. and Sakata, H. (2011), "Seismic retrofit of existing SRC frames using rocking walls and steel dampers", Front. Archit. Civ. Eng. China, 5(3), 259. https://doi.org/10.1007/s11709-011-0114-x.
  39. Xingzhu, P. and Pei, W. (2013), "Study on seismic property of RC frame rocking wall", Earthq. Resist. Eng. Retrofit., 2, 20.
  40. Xue, J., Gao, L., Liu, Z., Zhao, H. and Chen, Z. (2014), "Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns", Steel Compos. Struct., 16(3), 253. https://doi.org/10.12989/SCS.2014.16.3.253.