DOI QR코드

DOI QR Code

Effect of the stagnation pressure of a real gas on oblique shock waves

  • Mechta Mohammed (Aeronautical Sciences Laboratory, Institute of Aeronautics, and Space Studies University of Blida 1) ;
  • Yahiaoui Toufik (Aeronautical Sciences Laboratory, Institute of Aeronautics, and Space Studies University of Blida 1) ;
  • Dahia Ahmed (Nuclear Research Center of Birine)
  • 투고 : 2024.05.24
  • 심사 : 2024.08.10
  • 발행 : 2024.06.25

초록

This article deals with the changes in flow air properties across an oblique shock wave for a real gas. The flow through is investigated to find a general form for oblique shock waves. The main objective of this work will result in the development of a new numerical algorithm to determine the effect of the stagnation pressure on supersonic flow for thermally and calorically imperfect gases with a molecular dissociation threshold, thus giving a better affinity to the physical behavior of the waves. So, the effects of molecular size and intermolecular attraction forces are used to correct a state equation, emphasizing the determination of the impact of upstream stagnation parameters on oblique shock waves. As results, the specific heat pressure does not remain constant and varies with the temperature and density. At Mach numbers greater than 2.0, the temperature rise considerably, and the density rise is well above, that predicted assuming ideal gas behavior. It is shown that caloric imperfections in air have an appreciable effect on the parameters developed in the processes is considered. Computation of errors between the present model based on real gas theory and a perfect gas model shows that the influence of the thermal and caloric imperfections associated with a real gas is important and can rise up to 16%.

키워드

참고문헌

  1. Agnone, A.M. (1994), "Approximations for weak and strong oblique shock wave angles", AIAA J., 32(7), 1543-1545. https://doi.org/10.2514/3.12233. 
  2. Ali, A.H. (2023), "Numerical study of oblique shock wave", Basrah J. Sci., 41(1), 83-95.  https://doi.org/10.29072/basjs.20230106
  3. Anderson, J.D. Jr. (1989), Hypersonic and High Temperature Gas Dynamics, McGraw-Hill Book Company. New York. 
  4. Anderson, J.D. Jr. (1982), Modern Compressible Flow: With Historical Perspective, McGraw-Hill, New York. 
  5. Bounjad, M. and Zebbiche, T. (2017), "High temperature gas effect on the normal shock wave parameters", Int. J. Mech. Product. Eng., 5(10). 
  6. Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "Gas effect at high temperature on the supersonic nozzle conception", Int. J. Aeronaut. Space Sci., 18(1), 82-90. http://doi.org/10.5139/IJASS.2017.18.1.82. 
  7. Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "High temperature gas effect on the supersonic axisymmetric Minimum Length Nozzle design", Int. J. Eng. Tech. Res., 7, 23-30. 
  8. Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "Numerical study of gas effect at high temperature on the supersonic plug and expansion deflexion nozzles design", Int. Res. J. Eng. Technol., 4, 1480-1488. 
  9. Elaichi, T. and Zebbiche, T. (2018), "Stagnation temperature effect on the conical shock with application for air", Chin. J. Aeronaut., 31(4), 672-697. https://doi.org/10.1016/j.cja.2018.02.009. 
  10. GaoXiang, X., Pengfei, Y., HongHui, T. and ZongLin, J. (2020), "Cellular aluminum particle-air detonation based on realistic heat capacity model", Combus. Sci. Technol., 192(10), 1931-1945. https://doi.org/10.1080/00102202.2019.1632298. 
  11. Goldsmith, E.L. and Seddon, J. (1999), Intake Aerodynamics, 2nd Edition, Blackwell Science.
  12. Gupta, N. and Sharma, V. D. (2017), "Dissipative waves in real gases", Int. J. Nonlin. Mech., 95, 242-247. https://doi.org/10.1016/j.ijnonlinmec.2017.06.010. 
  13. Kenneth, E.T. (1996), "Computation of thermally perfect properties of oblique shock waves", CR- 4749, NASA. 
  14. Kopal, Z. (1947), "Tables of supersonic flow around cones", Report No. 1, Massachusetts Institute of Technology, Cambridge, Mass. 
  15. Maccoll, J.W. (1937), "The conical shock wave formed by a cone moving at a high speed", Proc. Roy. Soc. London. Ser. A-Math. Phys. Sci., 159(898), 459-472. https://doi.org/10.1098/rspa.0083. 
  16. Navarro, I.C. (2019), "Quasi-one dimensional flow through a nozzle with a shock", University of California, Irvine. 
  17. Peterson, C.R. and Hill, P.G. (1965), Mechanics and Thermodynamics of Propulsion, Addition-Wesley Publishing Company Inc., New York. 
  18. Raltson, A. and Rabinowitz, A. (1985), A First Course in Numerical Analysis, McGraw-Hill, US. 
  19. Rodio, M.G., Congedo, P.M. and Abgrall, R. (2014), "Two-phase flow numerical simulation with real-gas effects and occurrence of rarefaction shock waves", Eur. J. Mech.-B/Fluid., 45, 20-35. https://doi.org/10.1016/j.euromechflu.2013.11.007. 
  20. Salhi, M. and Roudane, M. (2019), "Numerical investigation of the thermal-caloric imperfections on entropy enhancement across normal shock waves", High Temper.-High Pressur., 48(4). 285-308. http://doi.org/10.32908/hthp.v48.689. 
  21. Salhi, M., Zebbiche, T. and Mehalem, A. (2016), "Stagnation pressure effect on the supersonic flow parameters with application for air in nozzles", Aeronaut. J., 120(1224), 313-354. https://doi.org/10.1017/aer.2015.13. 
  22. Sims, J.L. (1964), "Tables for supersonic flow around right circular cones at zero angle of attack", NASA SP-3004. 
  23. Sutton, G.P. and Biblarz, O. (2010), Rocket Propulsion Elements, 8th Edition, John Wiley and Sons. 
  24. Tarnavskii, G. A. (2004), "Influence of flow angularities in a hypersonic ramjet diffuser on the formation of the shockwve structure of the real gas flow", J. Eng. Phys. Thermophys., 77(3), 651-662. https://doi.org/10.1023/B:JOEP.0000036514.14795.95. 
  25. Tatum, K. and Tatum, K. (1997), "Computation of thermally perfect oblique shock wave properties", 35th Aerospace Sciences Meeting and Exhibit, 868. 
  26. Thompson, A.P. (1995), Compressible Fluid Dynamics, McGraw-Hill, US. 
  27. Van Wylen, G.J. (1973), Fundamentals of Classical Thermodynamics, John Wiley and Sons, US. 
  28. Zebbiche, T. (2009), "Effect of the stagnation temperature on the normal shock wave", J. Comput. Meth. Sci. Eng., 9(1-2), 79-92. https://doi.org/10.3233/JCM-2009-0253. 
  29. Zebbiche, T. (2019), "Stagnation pressure effect on the supersonic minimum length nozzle design", Aeronaut. J., 123(1265), 1013-1031. https://doi.org/10.1017/aer.2019.42. 
  30. Zebbiche, T. and Youbi, Z. (2006), "Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles", Int. J. Aeronaut. Space Sci., 7(1), 13-26. https://doi.org/10.5139/IJASS.2006.7.1.013.