References
- Agnone, A.M. (1994), "Approximations for weak and strong oblique shock wave angles", AIAA J., 32(7), 1543-1545. https://doi.org/10.2514/3.12233.
- Ali, A.H. (2023), "Numerical study of oblique shock wave", Basrah J. Sci., 41(1), 83-95. https://doi.org/10.29072/basjs.20230106
- Anderson, J.D. Jr. (1989), Hypersonic and High Temperature Gas Dynamics, McGraw-Hill Book Company. New York.
- Anderson, J.D. Jr. (1982), Modern Compressible Flow: With Historical Perspective, McGraw-Hill, New York.
- Bounjad, M. and Zebbiche, T. (2017), "High temperature gas effect on the normal shock wave parameters", Int. J. Mech. Product. Eng., 5(10).
- Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "Gas effect at high temperature on the supersonic nozzle conception", Int. J. Aeronaut. Space Sci., 18(1), 82-90. http://doi.org/10.5139/IJASS.2017.18.1.82.
- Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "High temperature gas effect on the supersonic axisymmetric Minimum Length Nozzle design", Int. J. Eng. Tech. Res., 7, 23-30.
- Boun-jad, M., Zebbiche, T. and Allali, A. (2017), "Numerical study of gas effect at high temperature on the supersonic plug and expansion deflexion nozzles design", Int. Res. J. Eng. Technol., 4, 1480-1488.
- Elaichi, T. and Zebbiche, T. (2018), "Stagnation temperature effect on the conical shock with application for air", Chin. J. Aeronaut., 31(4), 672-697. https://doi.org/10.1016/j.cja.2018.02.009.
- GaoXiang, X., Pengfei, Y., HongHui, T. and ZongLin, J. (2020), "Cellular aluminum particle-air detonation based on realistic heat capacity model", Combus. Sci. Technol., 192(10), 1931-1945. https://doi.org/10.1080/00102202.2019.1632298.
- Goldsmith, E.L. and Seddon, J. (1999), Intake Aerodynamics, 2nd Edition, Blackwell Science.
- Gupta, N. and Sharma, V. D. (2017), "Dissipative waves in real gases", Int. J. Nonlin. Mech., 95, 242-247. https://doi.org/10.1016/j.ijnonlinmec.2017.06.010.
- Kenneth, E.T. (1996), "Computation of thermally perfect properties of oblique shock waves", CR- 4749, NASA.
- Kopal, Z. (1947), "Tables of supersonic flow around cones", Report No. 1, Massachusetts Institute of Technology, Cambridge, Mass.
- Maccoll, J.W. (1937), "The conical shock wave formed by a cone moving at a high speed", Proc. Roy. Soc. London. Ser. A-Math. Phys. Sci., 159(898), 459-472. https://doi.org/10.1098/rspa.0083.
- Navarro, I.C. (2019), "Quasi-one dimensional flow through a nozzle with a shock", University of California, Irvine.
- Peterson, C.R. and Hill, P.G. (1965), Mechanics and Thermodynamics of Propulsion, Addition-Wesley Publishing Company Inc., New York.
- Raltson, A. and Rabinowitz, A. (1985), A First Course in Numerical Analysis, McGraw-Hill, US.
- Rodio, M.G., Congedo, P.M. and Abgrall, R. (2014), "Two-phase flow numerical simulation with real-gas effects and occurrence of rarefaction shock waves", Eur. J. Mech.-B/Fluid., 45, 20-35. https://doi.org/10.1016/j.euromechflu.2013.11.007.
- Salhi, M. and Roudane, M. (2019), "Numerical investigation of the thermal-caloric imperfections on entropy enhancement across normal shock waves", High Temper.-High Pressur., 48(4). 285-308. http://doi.org/10.32908/hthp.v48.689.
- Salhi, M., Zebbiche, T. and Mehalem, A. (2016), "Stagnation pressure effect on the supersonic flow parameters with application for air in nozzles", Aeronaut. J., 120(1224), 313-354. https://doi.org/10.1017/aer.2015.13.
- Sims, J.L. (1964), "Tables for supersonic flow around right circular cones at zero angle of attack", NASA SP-3004.
- Sutton, G.P. and Biblarz, O. (2010), Rocket Propulsion Elements, 8th Edition, John Wiley and Sons.
- Tarnavskii, G. A. (2004), "Influence of flow angularities in a hypersonic ramjet diffuser on the formation of the shockwve structure of the real gas flow", J. Eng. Phys. Thermophys., 77(3), 651-662. https://doi.org/10.1023/B:JOEP.0000036514.14795.95.
- Tatum, K. and Tatum, K. (1997), "Computation of thermally perfect oblique shock wave properties", 35th Aerospace Sciences Meeting and Exhibit, 868.
- Thompson, A.P. (1995), Compressible Fluid Dynamics, McGraw-Hill, US.
- Van Wylen, G.J. (1973), Fundamentals of Classical Thermodynamics, John Wiley and Sons, US.
- Zebbiche, T. (2009), "Effect of the stagnation temperature on the normal shock wave", J. Comput. Meth. Sci. Eng., 9(1-2), 79-92. https://doi.org/10.3233/JCM-2009-0253.
- Zebbiche, T. (2019), "Stagnation pressure effect on the supersonic minimum length nozzle design", Aeronaut. J., 123(1265), 1013-1031. https://doi.org/10.1017/aer.2019.42.
- Zebbiche, T. and Youbi, Z. (2006), "Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles", Int. J. Aeronaut. Space Sci., 7(1), 13-26. https://doi.org/10.5139/IJASS.2006.7.1.013.