DOI QR코드

DOI QR Code

Heat transfer characteristics of an internal cooling channel with pin-fins and ribbed endwalls in gas turbine blade

  • Vu T.A. Co (Vietnam Aviation Academy) ;
  • Hung C. Hoang (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Duy C.K. Do (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Son H. Truong (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Diem G. Pham (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Nhung T.T. Le (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Truong C. Dinh (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Linh T. Nha (School of Mechanical Engineering, Hanoi University of Science and Technology)
  • 투고 : 2024.02.18
  • 심사 : 2024.08.09
  • 발행 : 2024.06.25

초록

In jet engines, turbine blade cooling has an extremely important role. The pin-fin array, which is situated close to the trailing edge of the blade, aids in internal cooling of the gas turbine blades and preserves the structural integrity of the blade. Previous studies often focused on pin-fin configurations, but the current research focuses on improving the geometry at the endwalls to reduce wake vortices behind the pin-fins and enhance heat transfer at the endwalls location. Using the k-ω turbulence model, a numerical study was conducted on a ribbed shape situated on the walls between pin-fin arrays, spanning a Reynolds number range of 7400 to 36000, in order to determine the heat transport characteristics. The heat transfer efficiency coefficient and Nusselt number increase dramatically with the revised wall configuration, according to the numerical data. The channel's heat transfer efficiency is increased by enlarging the heat transfer areas near the pin-fins and by the interaction of the flow with the endwalls. The addition of ribs causes the Nusselt number of the new model to climb from 78% to 96% at the previously given Reynolds numbers, and the heat transfer efficiency index to rise from 60% to 73%. The height (Hr), position (Lr), forward width (Wf), and backward width (Wb) of the ribs are among the geometric elements that were looked at in order to determine how they affected the performance of heat transmission. In comparison to the reference design, the parametric study results demonstrate that the best forward width (Wf/R=18.75%) and backward width (Wb/R=31.25%) increase the heat transfer efficiency index by 0.4% and 1.3%, respectively.

키워드

과제정보

This research is funded by Hanoi University of Science and Technology (HUST) under project number T2023-PC-017, and the cooperation research between HUST and Viettel Aerospace Institute (VTX).

참고문헌

  1. ANSYS CFX-19.1 (2018), ANSYS Inc.
  2. Axtmann, M., Poser, R., Von Wolfersdorf, J. and Bouchez, M. (2016), "Endwall heat transfer and pressure loss measurements in staggered arrays of adiabatic pin fins", Appl. Therm. Eng., 103, 1048-1056. https://doi.org/10.1016/j.applthermaleng.2016.04.066.
  3. Bai, W., Liang, D., Chen, W. and Chyu, M.K. (2019), "Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array", Appl. Therm. Eng., 162, 114214. https://doi.org/10.1016/j.applthermaleng.2019.114214.
  4. Brigham, B.A. and VanFossen, G.J. (1984), "Length to diameter ratio and row number effects in short PinFin heat transfer", J. Eng. Gas Turbin. Power, 106(1), 241-244. https://doi.org/10.1115/1.3239541.
  5. Chi, X., Shih, T.I.P., Bryden, K.M., Siw, S., Chyu, M.K., Ames, R. and Dennis, R.A. (2011), "Effects of pin-fin height on flow and heat transfer in a rectangular duct", Turbo Expo: Power for Land, Sea, and Air, 5, 1435-1445. https://doi.org/10.1115/GT2011-46014.
  6. Chyu, M.K. (1990), "Heat transfer and pressure drop for short pin-fin arrays with pin-endwall fillet", J. Heat Transf., 112(4), 926-932. https://doi.org/10.1115/1.2910502.
  7. Chyu, M.K., Siw, S.C. and Moon, H.K. (2009), "Effects of height-to-diameter ratio of pin element on heat transfer from staggered Pin-Fin arrays", Turbo Expo: Power for Land, Sea, and Air, 3, 705-713. https://doi.org/10.1115/gt2009-59814.
  8. Dinh, C.T., Do, K.D.C., Chung, D.H. and Truong, H.S. (2023), "Effects of pin-fins with trapezoidal endwall on heat transfer characteristics in gas turbine blade internal cooling channels", J. Mech. Sci. Technol., 37(5), 2199-2210. https://doi.org/10.1007/s12206-023-2107-9.
  9. Dinh, C.T., Nguyen, T.M., Vu, T.D., Park, S.G. and Nguyen, Q.H. (2021), "Numerical investigation of truncated-root rib on heat transfer performance of internal cooling turbine blades", Phys. Fluid., 33(7), 076104. https://doi.org/10.1063/5.0054149.
  10. Dittus, F.W. and Boelter, L.M.K. (1985), "Heat transfer in automobile radiators of the tubular type", Int. Commun. Heat Mass Transf., 12(1), 3-22. https://doi.org/10.1016/0735-1933(85)90003-X.
  11. Do, K.D.C., Chung, D.H., Tran, D.Q., Dinh, C.T., Nguyen, Q.H. and Kim, K.Y. (2022), "Numerical investigation of heat transfer characteristics of Pin-Fins with roughed endwalls in gas turbine blade internal cooling channels", Int. J. Heat Mass Transf., 195, 123125. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123125.
  12. Effendy, M., Yao, Y.F., Yao, J. and Marchant, D.R (2019), "Detached eddy simulation of blade trailing-edge cutback cooling performance at various ejection slot angles", Int. J. Heat Fluid Flow, 80. 114214. https://doi.org/10.1016/j.ijheatfluidflow.2019.10848114214.7.
  13. Ghosh, S., Mondal, S., Kapat, J.S. and Ray, A. (2020), "Shape optimization of pin fin arrays using Gaussian process surrogate models under design constraints", Turbo Expo: Power for Land, Sea, and Air, 84164, V07AT15A021. https://doi.org/10.1115/GT2020-15277.
  14. Kirki, G. and Constantinescu, G. (2015), "Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder", Phys. Fluid., 27(7), 075102. https://doi.org/10.1063/1.4923063.
  15. Li, P. and Kim, K.Y. (2008), "Multiobjective optimization of staggered elliptical Pin-Fin arrays", Numer. Heat Transf., Part A: Appl., 53, 418-431. https://doi.org/10.1080/10407780701632759.
  16. Liang, C. and Rao, Y. (2021), "Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions", Int. J. Therm. Sci., 160, 106659. https://doi.org/10.1016/j.ijthermalsci.2020.10665.
  17. Metzger, D.E., Berry, R.A. and Bronson, J.P. (1982), "Developing heat transfer in rectangular ducts with staggered arrays of short pin fins", J. Heat Transf., 104(4), 700-706. https://doi.org/10.1115/1.3245188.
  18. Moon, M.A. and Kim, K.Y. (2013), "Heat transfer performance of a new fan-shaped pin-fin in internal cooling channel", Turbo Expo: Power for Land, Sea, and Air, 55140, V03AT12A006. https://doi.org/10.1115/GT2013-94193.
  19. Ostanek, J.K. and Thole, K.A. (2012), "Effects of varying streamwise and spanwise spacing in Pin-Fin arrays", Turbo Expo: Power for Land, Sea, and Air, 44700, 45-57. https://doi.org/10.1115/gt2012-68127.
  20. Otto, M., Hodges, J., Gupta, G. and Kapat, J.S. (2019), "Vortical structures in pin fin arrays for turbine cooling applications", Turbo Expo: Power for Land, Sea, and Air, 58646, V05AT16A003. https://doi.org/10.1115/GT2019-90552.
  21. Park, J.S., Kim, K.M., Lee, D.H., Cho, H.H. and Chyu, M.K. (2008), "Heat transfer on rotating channel with various heights of Pin-Fin", Turbo Expo: Power for Land, Sea, and Air, 4, 727-734. https://doi.org/10.1115/gt2008-50783.
  22. Pham, K.Q., Nguyen, Q.H., Vu, T.D. and Dinh, C.T. (2020), "Effects of boot-shaped rib on heat transfer characteristics of internal cooling turbine blades", J. Heat Transf., 142(10), 102106. https://doi.org/10.1115/1.4047490.
  23. Sa, K.J. and Kim, K.Y. (2015), "Analysis of flow over a gapped Pin-Fin", Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer, September. https://doi.org/10.1615/ichmt.2015.thmt15.2010.
  24. Sa, K.J., Afzal, A. and Kim, K.Y. (2017), "Performance analysis and design optimization of gapped Pin-Fin in a cooling channel", Heat Transf. Eng., 39(6), 549-567. https://doi.org/10.1080/01457632.2017.1320170.
  25. Sahin, B., Ozturk, N.A. and Gurlek, C. (2008), "Horseshoe Vortex Studies in the passage of a model plate-fin-and-tube heat exchanger", Int. J. Heat Fluid Flow, 29(1), 340-351. https://doi.org/10.1016/j.ijheatfluidflow.2007.06.005.
  26. Sahiti, N., Lemouedda, A., Stojkovic, D., Durst, F. and Franz, E. (2006), "Performance comparison of pin fin in-duct flow arrays with various pin cross-sections", Appl. Therm. Eng., 26(11-12), 1176-1192. https://doi.org/10.1016/j.applthermaleng.2005.10.042.
  27. Schekman, S. and Kim, T. (2017), "Thermal flows around a fully permeable short circular cylinder", Int. J. Heat Mass Transf., 105. 196-206. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.089.
  28. Sircar, A., Kimber, M., Rokkam, S. and Botha, G. (2020), "Turbulent flow and heat flux analysis from validated large eddy simulations of flow past a heated cylinder in the near wake region", Phys. Fluid., 32(12), 125119. https://doi.org/10.1063/5.0031831.
  29. Siw, S.C., Fradeneck, A.D., Chyu, M.K. and Alvin, M.A. (2015), "The effects of different pin-fin arrays on heat transfer and pressure loss in a narrow channel", Turbo Expo: Power for Land, Sea, and Air, 56727, V05BT13A026. https://doi.org/10.1115/gt2015-43855.
  30. Sparrow, E.M., Ramsey, J.W. and Altemani, C.A.C. (1980), "Experiments on in-line pin fin arrays-and performance comparisons with staggered arrays", Adv. Heat Transf., 102(1). 44-50. https://doi.org/10.1115/1.3244247.
  31. Tang, T., Yu, P., Shan, X., Li, J. and Yu, S. (2020), "On the transition behavior of laminar flow through and around a multi-cylinder array", Phys. Fluid., 32(1), 013601. https://doi.org/10.1063/1.5132362.
  32. Tran, V.H., Nguyen, T.H., Plourde, F., Do, K.D.C., Chung, D.H., Dinh, C.T. and Pham, G.D. (2023), "Investigation of extruded endwall on heat transfer characteristics of channel with staggering pin-fins", Int. J. Fluid Mach. Syst., 16(02), 169-183. https://doi.org/10.5293/IJFMS.2023.16.2.169.
  33. Uzol, O. and Camci, C. (2001), "Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications, Part 2: Wake flow field measurements and visualization using particle image velocimetry", Turbo Expo: Power for Land, Sea, and Air, 78521, V003T01A057. https://doi.org/10.1115/2001-GT-0181.
  34. Wan, W., Deng, D., Huang, Q., Zeng, T. and Huang, Y. (2017), "Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks", Appl. Therm. Eng., 114, 436-449. https://doi.org/10.1016/j.applthermaleng.2016.11.182.
  35. Won, S.Y., Mahmood, G.I. and Ligrani, P.M. (2004), "Spatially-resolved heat transfer and flow structure in a rectangular channel with Pin Fins", Int. J. Heat Mass Transf., 47(8-9), 1731-1743. https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.007.
  36. Ye, L., Liu, Z., Gao, C., Yang, X. and Feng, Z. (2017), "Numerical study on heat transfer perfor mance of a new-proposed Pin-Fin in an internal channel", Turbo Expo: Power for Land, Sea, and Air, 50879, V05AT11A014. https://doi.org/10.1115/gt2017-64573.
  37. Zukauskas, A. (1972), "Heat transfer from tubes in cross flow", Adv. Heat Transf., 08, 93-160. https://doi.org/10.1016/S0065-2717(08)70038-8.