DOI QR코드

DOI QR Code

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2023.12.11
  • Accepted : 2024.07.12
  • Published : 2024.06.25

Abstract

The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.

Keywords

References

  1. Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2023), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Bas. Des. Struct. Mach., 51(10), 5383-5406. https://doi.org/10.1080/15397734.2021.1999263.
  2. Afzali, M., Farrokh, M. and Carrera, E. (2023), "Nonlinear thermal post-buckling analysis of rectangular FG plates using CUF", Compos. Struct., 321, 117282. https://doi.org/10.1016/j.compstruct.2023.117282.
  3. Alessi, Y.A., Ali, I.A., Alazwari, M.A., Almitani, K.H., Abdelrahman, A. and Eltaher, M.A. (2023), "Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis", Adv. Aircraft Spacecraft Sci., 10(2), 179-202. https://doi.org/10.12989/aas.2023.10.2.179.
  4. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  5. Assie, A., Mohamed, S., Abdelrahman, A.A. and Eltaher, M.A. (2023b), "Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces", Steel Compos. Struct., 48(2), 113-130. https://doi.org/10.12989/scs.2023.48.2.113.
  6. Assie, A.E., Mohamed, S.M., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023a), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  7. Attia, M.A., Melaibari, A., Shanab, R.A. and Eltaher, M.A. (2022), "Dynamic analysis of sigmoid bidirectional FG microbeams under moving load and thermal load: Analytical laplace solution", Math., 10(24), 4797. https://doi.org/10.3390/math10244797.
  8. Baakeel, F., Eltaher, M.A., Basha, M.A., Melibati, A. and Abdelrahman, A.A. (2023), "Static and modal analysis of bio-inspired laminated composite shells using numerical simulation", Adv. Aircraft Spacecraft Sci., 10(4), 347-368. https://doi.org/10.12989/aas.2023.10.4.347.
  9. Babaei, H. and Eslami, M.R. (2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  10. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
  11. Belarbi, M.O., Daikh, A.A., Garg, A., Hirane, H., Houari, M.S.A., Civalek, O . and Chalak, H.D. (2022), "Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory", Arch. Civil Mech. Eng., 23(1), 15. https://doi.org/10.1007/s43452-022-00551-0.
  12. Belounar, A., Boussem, F. and Tati, A. (2023), "A novel C0 strain-based finite element for free vibration and buckling analyses of functionally graded plates", J. Vib. Eng. Technol., 11(1), 281-300. https://doi.org/10.1007/s42417-022-00577-x.
  13. Benguediab, S., Kebir, T., Kettaf, F.Z., Daikh, A.A, Tounsi, A., Benguediab, M. and Eltaher, M.A. (2023), "Thermomechanical behavior of Macro and Nano FGM sandwich plates", Adv. Aircraft Spacecraft Sci., 10(1) 83-106. https://doi.org/10.12989/aas.2023.10.1.083.
  14. Cho, J.R. (2022), "Nonlinear bending analysis of FG-CNTRC plate resting on elastic foundation by natural element method", Eng. Anal. Bound. Elem., 141, 65-74. https://doi.org/10.1016/j.enganabound.2022.05.008.
  15. Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory", J. Compos. Sci., 3(1), 15. https://doi.org/10.3390/jcs3010015.
  16. Daikh, A.A., Belarbi, M.O., Khechai, A., Li, L., Khatir, S., Abdelrahman, A.A. and Eltaher, M.A. (2023), "Bending of Bi-directional inhomogeneous nanoplates using microstructure-dependent higher-order shear deformation theory", Eng. Struct., 291, 116230. https://doi.org/10.1016/j.engstruct.2023.116230.
  17. Ding, H.X., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
  18. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. http://doi.org/10.1016/j.amc.2014.03.028.
  19. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. http://doi.org/10.1016/j.compstruct.2012.11.039.
  20. Esen, I. (2019a), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  21. Esen, I. (2019b), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech.-A/Solid., 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
  22. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  23. Esen, I., Koc, M.A. and Cay, Y. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Lat. Am. J. Solid. Struct., 15, e119. https://doi.org/10.1590/1679-78255102.
  24. Farzam, A. and Hassani, B. (2022), "Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST", Adv. Aircraft Spacecraft Sci., 9(1), 69-93. https://doi.org/10.12989/aas.2022.9.1.069.
  25. Fernando, D., Wang, C.M. and Chowdhury, A.R. (2018), "Vibration of laminated-beams based on reference-plane formulation: Effect of end supports at different heights of the beam", Eng. Struct., 159, 245-251. https://doi.org/10.1016/j.engstruct.2018.01.004.
  26. Gupta, S. and Chalak, H.D. (2022), "Prediction of vibration response of functionally graded sandwich plates by zig-zag theory", Adv. Aircraft Spacecraft Sci., 9(6), 507. https://doi.org/10.12989/aas.2022.9.6.507.
  27. Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, N. (2018), "Free bending vibration analysis of thin bidirectionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. http://doi.org/10.1016/j.compstruct.2017.10.014.
  28. Hoang, V.N.V. and Thanh, P.T. (2023), "Influences of arbitrary-distributed Kerr foundation on free vibration and nonlinear transient response of functionally graded plate in thermal environment", Thin Wall. Struct., 188, 110802. https://doi.org/10.1016/j.tws.2023.110802.
  29. Hong, N.T. (2020), "Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates", Int. J. Aerosp. Eng., 20, 1-16. https://doi.org/10.1155/2020/8831366.
  30. Hu, Z., Shi, Y., Xiong, S., Zheng, X. and Li, R. (2023), "New analytic free vibration solutions of non-Levy-type porous FGM rectangular plates within the symplectic framework", Thin Wall. Struct., 185, 110609. https://doi.org/10.1016/j.tws.2023.110609.
  31. Huynh, T.A., Lieu, X.Q. and Lee, J. (2017), "NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem", Compos. Struct., 160, 1178-1190. http://doi.org/10.1016/j.compstruct.2016.10.076.
  32. Karamanli, A., Aydogdu, M. and Vo, T.P. (2021), "A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model", Aerosp. Sci. Technol., 111, 106550. https://doi.org/10.1016/j.ast.2021.106550.
  33. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  34. Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020.
  35. Kitipornchai, S., Yang, J. and Liew, K.M. (2004), "Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections", Int. J. Solid. Struct., 41(9-10), 2235-2257. https://doi.org/10.1016/j.ijsolstr.2003.12.019.
  36. Kumar, R., Singh, B.N., Singh, J. and Singh, J. (2022), "Meshfree approach for flexure analysis of bidirectional porous FG plate subjected to I, L, and T types of transverse loading", Aerosp. Sci. Technol., 129, 107824. https://doi.org/10.1016/j.ast.2022.107824.
  37. Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Technol., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006.
  38. Li, J., Wang, G., Guan, Y., Zhao, G., Lin, J., Naceur, H. and Coutellier, D. (2021), "Meshless analysis of bi-directional functionally graded beam structures based on physical neutral surface", Compos. Struct., 259, 113502. https://doi.org/10.1016/j.compstruct.2020.113502.
  39. Li, S.R., Zhang, J.H. and Zhao, Y.G. (2007), "Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection", Thin Wall. Struct., 45(5), 528-536. https://doi.org/10.1016/j.tws.2007.04.002.
  40. Long, N.V., Tu, T.M., Truong, H.Q., Hai, L.T. and Trang, V.T.T. (2022), "Displacement-based and stress-based analytical approaches for nonlinear bending analysis of functionally graded porous plates resting on elastic substrate", Acta Mechanica, 233(4), 1689-1714. https://doi.org/10.1007/s00707-022-03196-5.
  41. Mahmoud, S.R., Ghandourah, E., Algarni, A., Balubaid, M., Tounsi, A. and Bourada, F. (2022), "On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model", Arch. Civil Mech, Eng., 22(4), 186. https://doi.org/10.1007/s43452-022-00506-5.
  42. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2022), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Math., 10(24), 4784. https://doi.org/10.3390/math10244784.
  43. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Free vibration characteristics of bidirectional graded porous plates with elastic foundations using 2D-DQM", Math., 11(1), 46. https://doi.org/10.3390/math11010046.
  44. Mohamed, S., Assie, A.E., Mohamed, N. and Eltaher, M.A. (2022), "Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories", Steel Compos. Struct., 45(3), 305-330. https://doi.org/10.12989/scs.2022.45.3.305.
  45. Mohamed, S.A. (2020), "A fractional differential quadrature method for fractional differential equations and fractional eigenvalue problems", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6753.
  46. Mohamed, S.A., Assie, A.E. and Eltaher, M.A. (2023b), "Novel incremental procedure in solving nonlinear static response of 2D-FG porous plates", Thin Wall. Struct., 189, 110779. https://doi.org/10.1016/j.tws.2023.110779.
  47. Mohamed, S.A., Mohamed, N., Abo-bakr, R.M. and Eltaher, M.A. (2023a), "Multi-objective optimization of snap-through instability of helicoidal composite imperfect beams using Bernstein polynomials method", Appl. Math. Model., 120, 301-329. https://doi.org/10.1016/j.apm.2023.03.034.
  48. Mohamed, S.A., Mohamed, N.A. and Abo-Hashem, S.I. (2021), "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", Math. Meth. Appl. Sci., 44(18), 13945-13967. https://doi.org/10.1002/mma.7667.
  49. Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091.
  50. Nguyen, N.V., Nguyen, H.X., Lee, S. and Nguyen-Xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Softw., 126, 110-126. https://doi.org/10.1016/j.advengsoft.2018.11.005.
  51. Patil, M.A. and Kadoli, R. (2022), "Effect of porosity and gradation of Galfenol-D on vibration suppression of bidirectional functionally graded beam", Mater. Today: Proc., 66, 1870-1874. https://doi.org/10.1016/j.matpr.2022.05.412.
  52. Peng, L.X., Chen, S.Y., Wei, D.Y., Chen, W. and Zhang, Y.S. (2022), "Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method", Compos. Struct., 290, 115482. https://doi.org/10.1016/j.compstruct.2022.115482.
  53. Qian, L.F. and Ching, H.K. (2004), "Static and dynamic analysis of 2-D functionally graded elasticity by using meshless local petrov-galerkin method", J. Chin. Inst. Eng., 27(4), 491-503. https://doi.org/10.1080/02533839.2004.9670899.
  54. Ramteke, P.M. and Panda, S.K. (2023), "Nonlinear static and dynamic response prediction of bidirectional doubly-curved porous FG panel and experimental validation", Compos. Part A: Appl. Sci. Manuf., 166, 107388. https://doi.org/10.1016/j.compositesa.2022.107388.
  55. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
  56. Shanab, R., Mohamed, S., Tharwan, M.Y., Assie, A.E. and Eltaher, M.A. (2022), "Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis", Steel Compos. Struct., 45(5), 729. https://doi.org/10.12989/scs.2022.45.5.729.
  57. Shanab, R.A. and Attia, M.A. (2022), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 38, 2269-2312. https://doi.org/10.1007/s00366-020-01205-6.
  58. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
  59. Shen, H.S. (2007), "Nonlinear thermal bending response of FGM plates due to heat conduction", Compos. Part B: Eng., 38(2), 201-215. https://doi.org/10.1016/j.compositesb.2006.06.004.
  60. Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
  61. Siam, O.A., Shanab, R.A., Eltaher, M.A. and Mohamed, N.A. (2023), "Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method", Adv. Aircraft Spacecraft Sci., 10(3), 257-279. https://doi.org/10.12989/aas.2023.10.3.257.
  62. Singh, B.N., Ranjan, V. and Hota, R.N. (2022), "Vibroacoustic response of mode localized thin functionally graded plates using physical neutral surface", Compos. Struct., 287, 115301. https://doi.org/10.1016/j.compstruct.2022.115301.
  63. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
  64. Taczala, M., Buczkowski, R. and Kleiber, M. (2022), "Analysis of FGM plates based on physical neutral surface using general third-order plate theory", Compos. Struct., 301, 116218. https://doi.org/10.1016/j.compstruct.2022.116218.
  65. Talha, M. and Singh, B.N. (2011), "Nonlinear mechanical bending of functionally graded material plates under transverse loads with various boundary conditions", Int. J. Model. Simul. Scientif. Comput., 2(02), 237-258. https://doi.org/10.1142/S1793962311000451.
  66. Van Do, T., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. http://doi.org/10.1016/j.compstruct.2017.09.059.
  67. Van Do, V.N. and Lee, C.H. (2018), "Nonlinear analyses of FGM plates in bending by using a modified radial point interpolation mesh-free method", Appl. Math. Model., 57, 1-20. https://doi.org/10.1016/j.apm.2017.12.035.
  68. Xu, J.Q., She, G.L., Li, Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of Functionally graded materials considering geometric imperfection", Steel Compos. Struct., 46(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
  69. Yin, S., Yu, T. and Liu, P. (2013), "Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface", Adv. Mech. Eng., 5, 634584. http://doi.org/10.1155/2013/634584.
  70. Zhang, D.G. (2013), "Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory", Int. J. Mech. Sci., 68, 92-104. http://doi.org/10.1016/j.ijmecsci.2013.01.002.
  71. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
  72. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  73. Zhou, T. and Song, Y. (2019), "Three-dimensional nonlinear bending analysis of FG-CNTs reinforced composite plates using the element-free Galerkin method based on the SR decomposition theorem", Compos. Struct., 207, 519-530. https://doi.org/10.1016/j.compstruct.2018.09.026.