DOI QR코드

DOI QR Code

AN INERTIAL TSENG ALGORITHM FOR SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY AND FIXED POINT PROBLEM IN HILBERT SPACES

  • Shamsudeen Abiodun Kajola (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Ojen Kumar Narain (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Adhir Maharaj (Department of Mathematics, Durban University of Technology)
  • Received : 2023.11.16
  • Accepted : 2024.03.19
  • Published : 2024.09.15

Abstract

In this paper, we propose an inertial method for solving a common solution to fixed point and Variational Inequality Problem in Hilbert spaces. Under some standard and suitable assumptions on the control parameters, we prove that the sequence generated by the proposed algorithm converges strongly to an element in the solution set of Variational Inequality Problem associated with a quasimonotone operator which is also solution to a fixed point problem for a demimetric mapping. Finally, we give some numerical experiments for supporting our main results and also compare with some earlier announced methods in the literature.

Keywords

References

  1. S. Akashi and W. Takahashi, Weak convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Nonlinear Convex Anal., 10 (2016), 2159-2169.
  2. T.O. Alakoya and O.T. Mewomo, Viscosity S-Iteration Method with Inertial Technique and Self-Adaptive Step Size for Split Variational Inclusion, Equilibrium and Fixed Point Problems, Comput. Appl. Math., 41(1) (2021), 31 pp.
  3. F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11. https://doi.org/10.1023/A:1011253113155
  4. M.M. Alves and R.T. Marcavillaca, On inexact relative-error hybrid proximal extragradient, forward-backward and Tsengs modified forward-backward methods with inertial effects, Set-Valued Var. Anal., 28 (2020), 301-325. https://doi.org/10.1007/s11228-019-00510-7
  5. A.S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody, 12 (1976), 1164-1173.
  6. M. Bux, S. Ullah, M.S. Arif and K. Abodayeh, A self-Adaptive Technique for Solving Variational Inequalities: A New Approach to the Problem, J. Funct. Spaces, 3 (2022), 1-5. https://doi.org/10.1155/2022/7078707
  7. L.C. Ceng, N. Hadjisavvas and N.C. Wong, Strong convergence theorem by a hybrid extragradient like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635-646. https://doi.org/10.1007/s10898-009-9454-7
  8. Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Meth. Softw., 26 (2011), 827-845. https://doi.org/10.1080/10556788.2010.551536
  9. Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335. https://doi.org/10.1007/s10957-010-9757-3
  10. Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 56 (2012), 301-323. https://doi.org/10.1007/s11075-011-9490-5
  11. Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevichs extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2012), 1119-1132. https://doi.org/10.1080/02331934.2010.539689
  12. J. Chen, S. Liu and X. Chang, Modified Tsengs extragradient methods for variational inequality on Hadamard manifolds, Appl. Anal., 100 (2021), 2627-2640. https://doi.org/10.1080/00036811.2019.1695783
  13. S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci., 14 (1980), 42-54. https://doi.org/10.1287/trsc.14.1.42
  14. S.V Denisov, V.V. Semenov and L.M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757-765. https://doi.org/10.1007/s10559-015-9768-z
  15. Q. Dong, Y. Cho, L. Zhong and T.M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687-704. https://doi.org/10.1007/s10898-017-0506-0
  16. W.M. Dyab, A.A Sakr, M.S Ibrahim and K. Wu, Variational Analysis of a Dually Polarized Waveguide Skew Loaded by Dielectric Slab, IEEE Microw. Wirel. Components Lett., 30 (2020), 737-740. https://doi.org/10.1109/LMWC.2020.3004004
  17. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7 (1964), 91-140.
  18. G. Fichera, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 34 (1963), 138-142.
  19. E.C. Godwin, T.O. Alakoya, O.T. Mewomo and J.C. Yao, Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal., (2022). DOI:10.1080/00036811.2022.2107913.
  20. N. Hadjisavvas and S. Schaible, Quasimonotone variational inequalities in Banach spaces, J. Optimiz. Theory App., 90 (1996), 95-111. https://doi.org/10.1007/BF02192248
  21. B.S. He and L.Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl., 112 (2002), 111-128. https://doi.org/10.1023/A:1013096613105
  22. D.V. Hieu, P.K. Anh and L.D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 66 (2017), 75-96. https://doi.org/10.1007/s10589-016-9857-6
  23. D.V. Hieu and D.V. Thong, New extragradient-like algorithms for strongly pseudomonotone variational inequalities, J. Glob. Optim., 70 (2018), 385-399. https://doi.org/10.1007/s10898-017-0564-3
  24. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings, Nonlinear Anal., 61 (2005), 341-350. https://doi.org/10.1016/j.na.2003.07.023
  25. C. Izuchukwu, A.A. Mebawondu, K.O Aremu, H.A. Abass and O.T. Mewomo, Viscosity iterative techniques for approximating a common zero of monotone operators in an Hadamard space, Rend. Circ. Mat. Palermo, (2019), https://doi.org/10.1007/s12215-019-00415-2.
  26. C. Izuchukwu, G.N. Ogwo, A.A. Mebawondu and O.T. Mewomo, On finite family of monotone variational inclusion problems in reflexive Banach space, Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 82(3) (2020) 89-124.
  27. P.D. Khanh and P.T. Vuong, Modified projection method for strongly pseudomonotone variational inequalities, J. Global Optim., 58 (2014), 341-350. https://doi.org/10.1007/s10898-013-0042-5
  28. G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12 (1976), 747-756.
  29. H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77 (2020), 491-508. https://doi.org/10.1007/s10589-020-00217-8
  30. Y.V. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520. https://doi.org/10.1137/14097238X
  31. Y.V. Malitsky and V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61 (2015), 193-202. https://doi.org/10.1007/s10898-014-0150-x
  32. M.A Noor and S. Ullah, Predictor-corrector self-adaptive methods for variational inequalities, Transylv. Rev., 16 (2017), 4147-4152.
  33. A.E. Ofem, A.A. Mebawondu, C. Agbonkhese, G.C. Ugwunnadi and O.K. Narain, Alternated inertial relaxed Tseng method for solving fixed point and quasi-monotone variational inequality problems, Nonlinear Funct. Anal. Appl., 29 (1) ( 2024), 131-164.
  34. D.O. Peter, A.A. Mebawondu, G.C. Ugwunndi, P. Pillay and O.K. Narain, Solving Quasimonotone Split Variational Inequality Problem and Fixed Point Problem In Hilbert Spaces, Nonlinear Funct. Anal. Appl., 28 (1) ( 2023), 205-235 https://doi.org/10.5269/bspm.65211
  35. B.T Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4(5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
  36. L.D. Popov, A modication of the ArrowHurwicz method for searching for saddle points, Mat. Zametki, 28 (1980), 777784.
  37. S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750. https://doi.org/10.1016/j.na.2011.09.005
  38. D.R. Sahu and A.K. Singh, Inertial normal S-type Tsengs extragradient algorithm for solution of variational inequality problems, RAIRO Oper. Res., 55 (2021), 21652180.
  39. S. Salahuddin, The extragradient method for quasi-monotone variational inequalities, Optimization, (2020), https://doi.org/10.1080/02331934.2020.1860979.
  40. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258 (1964), 4413-4416.
  41. W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
  42. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone Mappings, J. Optim. Theory Appl., 118 (2003), 417-428. https://doi.org/10.1023/A:1025407607560
  43. D.V. Thong and D.V. Hieu, Modified Tsengs extragradient algorithms for variational inequality problems, J. Fixed Point Theory Appl., 79 (2018) 597-610.
  44. D.V. Thong and D.V. Hieu, Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems, Numer. Algor., 82 (2019), 761-789. https://doi.org/10.1007/s11075-018-0626-8
  45. D.V. Thong and P.T. Vuong, Modified Tsengs extragradient methods for solving pseudomonotone variational inequalities, Optimization, 68 (2019), 22032222.
  46. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim., 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806
  47. F. Wang and H.K. Xu, Weak and strong convergence theorems for variational inequality and fixed point problems with Tsengs extragradient method, Taiwan. J. Math., 16 (2012), 1125-1136. https://doi.org/10.11650/twjm/1500406682
  48. Y. Yao, A.M. Noor, I.K Noor, Y-C. Liou and H. Yaqoob, Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 110(3) (2010), 1211-1224. https://doi.org/10.1007/s10440-009-9502-9
  49. T.C. Yin, Y.K. Wu and C.F. Wen, An Iterative Algorithm for Solving Fixed Point Problems and Quasimonotone Variational Inequalities, J. Math., 2022, Article ID 8644675, 9 pages, https://doi.org/10.1155/2022/8644675.
  50. L. Zheng, A double projection algorithm for quasimonotone variational inequalities in Banach spaces, Inequal. Appl., 123 (2028), 1-20.