References
- S. Akashi and W. Takahashi, Weak convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Nonlinear Convex Anal., 10 (2016), 2159-2169.
- T.O. Alakoya and O.T. Mewomo, Viscosity S-Iteration Method with Inertial Technique and Self-Adaptive Step Size for Split Variational Inclusion, Equilibrium and Fixed Point Problems, Comput. Appl. Math., 41(1) (2021), 31 pp.
- F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11. https://doi.org/10.1023/A:1011253113155
- M.M. Alves and R.T. Marcavillaca, On inexact relative-error hybrid proximal extragradient, forward-backward and Tsengs modified forward-backward methods with inertial effects, Set-Valued Var. Anal., 28 (2020), 301-325. https://doi.org/10.1007/s11228-019-00510-7
- A.S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody, 12 (1976), 1164-1173.
- M. Bux, S. Ullah, M.S. Arif and K. Abodayeh, A self-Adaptive Technique for Solving Variational Inequalities: A New Approach to the Problem, J. Funct. Spaces, 3 (2022), 1-5. https://doi.org/10.1155/2022/7078707
- L.C. Ceng, N. Hadjisavvas and N.C. Wong, Strong convergence theorem by a hybrid extragradient like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635-646. https://doi.org/10.1007/s10898-009-9454-7
- Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Meth. Softw., 26 (2011), 827-845. https://doi.org/10.1080/10556788.2010.551536
- Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335. https://doi.org/10.1007/s10957-010-9757-3
- Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 56 (2012), 301-323. https://doi.org/10.1007/s11075-011-9490-5
- Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevichs extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2012), 1119-1132. https://doi.org/10.1080/02331934.2010.539689
- J. Chen, S. Liu and X. Chang, Modified Tsengs extragradient methods for variational inequality on Hadamard manifolds, Appl. Anal., 100 (2021), 2627-2640. https://doi.org/10.1080/00036811.2019.1695783
- S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci., 14 (1980), 42-54. https://doi.org/10.1287/trsc.14.1.42
- S.V Denisov, V.V. Semenov and L.M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757-765. https://doi.org/10.1007/s10559-015-9768-z
- Q. Dong, Y. Cho, L. Zhong and T.M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687-704. https://doi.org/10.1007/s10898-017-0506-0
- W.M. Dyab, A.A Sakr, M.S Ibrahim and K. Wu, Variational Analysis of a Dually Polarized Waveguide Skew Loaded by Dielectric Slab, IEEE Microw. Wirel. Components Lett., 30 (2020), 737-740. https://doi.org/10.1109/LMWC.2020.3004004
- G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7 (1964), 91-140.
- G. Fichera, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 34 (1963), 138-142.
- E.C. Godwin, T.O. Alakoya, O.T. Mewomo and J.C. Yao, Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal., (2022). DOI:10.1080/00036811.2022.2107913.
- N. Hadjisavvas and S. Schaible, Quasimonotone variational inequalities in Banach spaces, J. Optimiz. Theory App., 90 (1996), 95-111. https://doi.org/10.1007/BF02192248
- B.S. He and L.Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl., 112 (2002), 111-128. https://doi.org/10.1023/A:1013096613105
- D.V. Hieu, P.K. Anh and L.D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 66 (2017), 75-96. https://doi.org/10.1007/s10589-016-9857-6
- D.V. Hieu and D.V. Thong, New extragradient-like algorithms for strongly pseudomonotone variational inequalities, J. Glob. Optim., 70 (2018), 385-399. https://doi.org/10.1007/s10898-017-0564-3
- H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings, Nonlinear Anal., 61 (2005), 341-350. https://doi.org/10.1016/j.na.2003.07.023
- C. Izuchukwu, A.A. Mebawondu, K.O Aremu, H.A. Abass and O.T. Mewomo, Viscosity iterative techniques for approximating a common zero of monotone operators in an Hadamard space, Rend. Circ. Mat. Palermo, (2019), https://doi.org/10.1007/s12215-019-00415-2.
- C. Izuchukwu, G.N. Ogwo, A.A. Mebawondu and O.T. Mewomo, On finite family of monotone variational inclusion problems in reflexive Banach space, Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 82(3) (2020) 89-124.
- P.D. Khanh and P.T. Vuong, Modified projection method for strongly pseudomonotone variational inequalities, J. Global Optim., 58 (2014), 341-350. https://doi.org/10.1007/s10898-013-0042-5
- G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12 (1976), 747-756.
- H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77 (2020), 491-508. https://doi.org/10.1007/s10589-020-00217-8
- Y.V. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520. https://doi.org/10.1137/14097238X
- Y.V. Malitsky and V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61 (2015), 193-202. https://doi.org/10.1007/s10898-014-0150-x
- M.A Noor and S. Ullah, Predictor-corrector self-adaptive methods for variational inequalities, Transylv. Rev., 16 (2017), 4147-4152.
- A.E. Ofem, A.A. Mebawondu, C. Agbonkhese, G.C. Ugwunnadi and O.K. Narain, Alternated inertial relaxed Tseng method for solving fixed point and quasi-monotone variational inequality problems, Nonlinear Funct. Anal. Appl., 29 (1) ( 2024), 131-164.
- D.O. Peter, A.A. Mebawondu, G.C. Ugwunndi, P. Pillay and O.K. Narain, Solving Quasimonotone Split Variational Inequality Problem and Fixed Point Problem In Hilbert Spaces, Nonlinear Funct. Anal. Appl., 28 (1) ( 2023), 205-235 https://doi.org/10.5269/bspm.65211
- B.T Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4(5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
- L.D. Popov, A modication of the ArrowHurwicz method for searching for saddle points, Mat. Zametki, 28 (1980), 777784.
- S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750. https://doi.org/10.1016/j.na.2011.09.005
- D.R. Sahu and A.K. Singh, Inertial normal S-type Tsengs extragradient algorithm for solution of variational inequality problems, RAIRO Oper. Res., 55 (2021), 21652180.
- S. Salahuddin, The extragradient method for quasi-monotone variational inequalities, Optimization, (2020), https://doi.org/10.1080/02331934.2020.1860979.
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258 (1964), 4413-4416.
- W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone Mappings, J. Optim. Theory Appl., 118 (2003), 417-428. https://doi.org/10.1023/A:1025407607560
- D.V. Thong and D.V. Hieu, Modified Tsengs extragradient algorithms for variational inequality problems, J. Fixed Point Theory Appl., 79 (2018) 597-610.
- D.V. Thong and D.V. Hieu, Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems, Numer. Algor., 82 (2019), 761-789. https://doi.org/10.1007/s11075-018-0626-8
- D.V. Thong and P.T. Vuong, Modified Tsengs extragradient methods for solving pseudomonotone variational inequalities, Optimization, 68 (2019), 22032222.
- P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim., 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806
- F. Wang and H.K. Xu, Weak and strong convergence theorems for variational inequality and fixed point problems with Tsengs extragradient method, Taiwan. J. Math., 16 (2012), 1125-1136. https://doi.org/10.11650/twjm/1500406682
- Y. Yao, A.M. Noor, I.K Noor, Y-C. Liou and H. Yaqoob, Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math., 110(3) (2010), 1211-1224. https://doi.org/10.1007/s10440-009-9502-9
- T.C. Yin, Y.K. Wu and C.F. Wen, An Iterative Algorithm for Solving Fixed Point Problems and Quasimonotone Variational Inequalities, J. Math., 2022, Article ID 8644675, 9 pages, https://doi.org/10.1155/2022/8644675.
- L. Zheng, A double projection algorithm for quasimonotone variational inequalities in Banach spaces, Inequal. Appl., 123 (2028), 1-20.