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1. Introduction

In this paper, let H be a real Hilbert space with inner product 〈, ., 〉 which
induces the norm ‖.‖; ∅ 6= C ⊂ H, N and R represent a nonempty closed
and convex subset of H, the set of all positive integers and the set of real
numbers, respectively. If {ψn}∞n=1 is a sequence in C and = : C −→ C is a
nonlinear mapping, then ⇀,→ and F (=) = {ψ ∈ C : =ψ = ψ} denote weak
convergence, strong convergence and the set of fixed point of the mapping =,
respectively.

A mapping = is known as nonexpansive if it satisfies the inequality

‖=ψ −=φ‖ ≤ ‖ψ − φ‖, ∀ψ, φ ∈ C; (1.1)

The problem of investigating fixed points of nonexpansive mapping has been
widely studied by several authors.

Halpern [9] first initiated the following iterative sequence:{
ψ1 ∈ C
ψn+1 = ℘nu+ (1− ℘n)=℘n,

(1.2)

where {℘n}∞n=1 ⊂ [0, 1] and u ∈ C is fixed. Moreover, Halpern established in
[9] the following result on the convergence of (1.2) for appropriate conditions
on {℘n}∞n=1.

Theorem 1.1. ([9]) Let H and C be as described above (with C bounded). Let
= : C −→ C be a nonexpansive mapping. For a fixed u ∈ C, let the sequence
{ψn}∞n=1 be generated iteratively by{

ψ1 ∈ C
ψn+1 = ℘−θn u+ (1− ℘−θn )=℘n,

(1.3)

where θ ∈ (0, 1). Then, {ψn}∞n=1 converges strongly to the element of F (=)
nearest to u.

He further demonstrated that the control conditions

C1 : lim℘n
n→∞

= 0 and C2 :
∞∑
n=1

℘n =∞

are necessary for convergence to the fixed point of =.
Thereafter, several investigation has been carried out to ascertain the im-

plications of condition C1 and C2 on the convergence of (1.3).

In this direction, Chidume and Chidume [8] and [27] independently estab-
lished that the conditions are sufficient to ensure strong convergence to the
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fixed point of the following iteration method:{
ψ1 ∈ C
ψn+1 = ℘nu+ (1− ℘n)[λψn + (1− λ)=℘n], ∀n ≥ 1.

In [24], Osilike and Isogugu studied Halpern-type for k-strictly pseudonon-
spreading mappings =, which is more general that the class of nonspreadings.
To get the strong convergence of (1.2), they replaced the mapping = with the
averaged type mapping =δ; that is, with the mapping

=δ = (1− δ)I + δ=, δ ∈ (0, 1). (1.4)

Recently, Kohasaka and Takahashi [11, 12] came up with an important class
of nonlinear mappings which they referred to as nonspreading mappings. Let
E be a real smooth, strictly convex and reflexive Banach space and denote by
j : E −→ 2E

?
the duality mapping of E . Let ∅ 6= K ⊂ E be a closed and

convex. A mapping = : K −→ K is known as nonspreading if

ϕ(=ψ,=φ) + ϕ(=φ,=ψ) ≤ ϕ(=ψ, φ) + ϕ(=φ, ψ), (1.5)

for all ψ, φ ∈ K, where

ϕ(ψ, φ) = ‖ψ‖2 − 2〈ψ, j(φ)〉+ ‖φ‖2, ∀ψ, φ ∈ E . (1.6)

Kohasaka and Takahashi considered the class of nonspreading mappings to
study the resolvent of a maximum monotone operator in a real smooth, strictly
convex and reflexive Banach space. This class of mappings was obtained from
the class of firmly nonexpansive mappings (see, for example, [10, 11]). We
mention in passing that if E is a real Hilbert space H, then j is the identity
and

ϕ(ψ, φ) = ‖ψ‖2 − 2〈ψ, φ〉+ ‖φ‖2.
Consequently. ifH and C are as described above, then the mapping = : C −→ C
is nonspreading if

‖=ψ −=φ‖2 ≤ ‖=ψ − φ‖2 + ‖=φ− ψ‖2, ∀ψ, φ ∈ C. (1.7)

It is established in [14] that (1.7) is equivalent to the inequality

‖=ψ −=φ‖2 ≤ ‖ψ − φ‖2 + 〈ψ −=ψ,−φ−=φ〉, ∀ψ, φ ∈ C. (1.8)

Remark 1.2. If = is nonspreading (resp. nonexpansive) and F (=) 6= ∅, then
= is quasi-nonexpansive.

In [14], lemoto and Takahashi studied the iterative approximation of com-
mon fixed points of nonexpansive mapping ð and nonspreading mapping = of
C into itself in a real Hilbert space. They considered an iterative sequence akin
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to the one employed by Moudafi [16]. To be precise, they proved the following
result:

Theorem 1.3. ([14, Theorem 4.1]) Let H and C be as described above. Let
= : C −→ C be a nonspreadinmg mapping and ð : C −→ C be a nonexpansive
mapping such that F (=)∩F (ð) 6= ∅. Let {ψn}∞n=1 be a real sequence generated
by {

ψ1 ∈ C
ψn+1 = (1− ℘n)ψn + ℘n[µnψn + (1− µn)=℘n], ∀n ≥ 1,

where {℘n}∞n=1, {µn}∞n=1 ⊂ [0, 1]. Then, the following conclusions hold:

(1) If
∞∑
n=1

℘n(1 − ℘n) = ∞ and
∞∑
n=1

(1 − µn) < ∞, then {℘n}∞n=1, {µn}∞n=1

converges weakly to ν ∈ F (=).

(2) If lim inf
n→∞1

℘n(1− ℘n) > 0 and
∞∑
n=1

µn <∞, then {℘n}∞n=1, {µn}∞n=1 con-

verges weakly to ν ∈ F (=).
(3) If lim inf

n→∞1
℘n(1−℘n) > 0 and lim inf

n→∞1
µn(1−µn) > 0, then {℘n}∞n=1, {µn}∞n=1

converges weakly to ν ∈ F (=) ∩ F (ð).

Searching for the fixed points of nonexpansive mappings, nonspreading map-
pings and strictly pseudononspreading mappings are vital topics in fixed point
theory, and have been proven to be priceless in the applied areas of signal pro-
cessing [34], the split feasibility problems [33] and convex feasibility problem
[15]. Subsequently, as a worthy generations of the aforementioned mappings,
the notion of enriched nonlinear mappings was initiated by Berinde [2, 3] in
the setup of a real Hilbert space. This concept was later extended to the more
general Banach space by Saleem [26].

Readers interested in this direction of research may consult [18, 19, 20, 21,
22, 25] and the references therein.

Definition 1.4. A mapping = : C −→ C is called Ψ=-enriched Lipschitizian
(or (σ,Ψ=)-enriched Lipshitizian) (see [26]) if for all ψ, φ ∈ C, there exist
σ ∈ [0,+∞) and a continuous nondecreasing function Ψ= : R+ −→ R+, with
Ψ=(0) = 0 such that

‖σ(ψ − φ) + =ψ −=φ‖ ≤ (σ + 1)Ψ=(‖ψ − φ‖). (1.9)

The following special cases due to inequality (1.9) are worth mentioning:

(1) if σ = 0, inequality (1.9) reduces to a class of mappings known as
Ψ=-Lipschitizian;
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(2) if σ = 0 and Ψ(t) = Lt, for L > 0, then (1.9) reduces to a class
of mappings called L-Lipschitizian with L as the Lipschitz constant.
In a more special case where σ = 0,Ψ=(t) = Lt and L = 1, then
Ψ=-enriched Lipschitizian mapping immediately reduces to the class
of nonexpansive mappings on C;

(3) if Ψ=(s) = s, then inequality (1.9) becomes

‖σ(ψ − φ) + =ψ −=φ‖ ≤ (σ + 1)‖ψ − φ‖ (1.10)

and is known as σ-enriched nonexpansive mapping. This class of map-
pings was first considered by Berinde [2, 3] as a generalization of a
well-known class of mappings called nonexpansive mapping.

Note that if Ψ= is not necessarily nondecreasing and satisfies the condition

Ψ=(t) < t for t > 0,

then we have the class of η-enriched contraction mappings.

Considering results of Lemoto and Takahashi [14], Berinde [3] and other
results in the papers studied, the following question becomes necessary:

Question 1:

(1) Could there be a nonlinear mapping that contains the class of mapping
defined by (1.7) for which we would obtain the results in [14] as special
cases?

(2) Could it be possible to obtain strong convergence result for an averaged
mapping in the setup of a real Hilbert space?

Lemoto and Takahashi considered the class of nonspreading mappings and
proved weak convergence Theorem as their main result in [14]. The results
they obtained (in conjunction with those of Kohasaka and Takahashi [12])
opened a new direction in fixed point theory.

In this paper, we first introduce a new class of nonlinear mapping called σ-
enriched nonspreading mappings and give some nontrivial examples to demon-
strate its existence. Further, we modify the iterative method studied in [14]
and thereafter give an affirmative answer to Question 1.

The rest of the paper is organised as follows: Section 2 will consider pre-
liminary results which will be needed in establishing our main results. Many
lemmas and propositions which will serve as our main results (including some
of their consequences) and the conclusion of results obtained in this paper will
be considered in Section 3.
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2. Preliminaries

In the sequel, we state some well-known definitions and lemmas which shall
be helpful in establishing the proof of our main results.

Let H be a real Hilbert space and let {ψn}∞n=1 ⊂ H. We shall represent
weak convergence of {ψn}∞n=1 to a point ψ ∈ H by ψn ⇀ ψ and the strong
convergence of {ψn}∞n=1 to a point ψ ∈ H by ψn → ψ as n→∞, respectively.

Lemma 2.1. ([24]) Let H be a real Hilbert space. Then, the following well-
researched results are valid:

(i) For all ~, ℘ ∈ H,

‖℘+ ~‖2 = ‖℘‖2 + 2〈℘, ~〉+ ‖~‖2.
(ii) For all ~, ℘ ∈ H,

‖~ + ℘‖2 ≤ ‖~‖2 + 2〈℘, ~ + ℘〉.
(iii) For ℘, ~ ∈ H and for all t ∈ [0, 1].

‖t℘+ (1− t)~‖2 = t‖℘‖2 + (1− t)‖~‖2 − t(1− t)|℘− ~‖2.
(iv) If {ψn}∞n=1 is a sequence in H such that ψn ⇀ ℘ ∈ H, then

lim sup
n→∞

‖ψn − ~‖2 = lim sup
n→∞

‖ψn − ℘‖2 + ‖℘− ~‖2.

Definition 2.2. ([24]) Let H be a real Hilbert space and ∅ 6= C ⊂ H be closed
and convex. The nearest point projection PC : H −→ C defined from H onto
C is a operator that assigns to each ψ ∈ H its nearest point represented with
PCψ in Ω. Thus, PC is the unique point in C such that

‖ψ − PCψ‖ ≤ ‖ψ − ~‖, ∀~ ∈ C.

Lemma 2.3. ([15]) Let H be a real Hilbert space, ∅ 6= C ⊂ H be closed and
convex and PC : H −→ C. be a metric projection. Then

(i)
‖PC℘− PC~‖ ≤ 〈℘− ~, PC℘− PC~〉, ∀℘, ~ ∈ H;

(ii) PC is a nonexpansive mapping, that is, ‖PC℘− PC~‖ ≤ ‖℘− ~‖;
(iii) given that ℘ ∈ H and z ∈ C, then z = PC℘ if and only if

〈℘− z, ~− z〉 ≤ 0, ∀~ ∈ C.

Lemma 2.4. ([30]) Let H be a real Hilbert space and ∅ 6= C ⊂ H be closed and
convex. Let PC : H −→ Ω be the metric projection of H onto C. Let {ψn}∞n=1

be a sequence in C and let

‖ψn+1 − ϑ‖ ≤ ‖ψn − ϑ‖
for all ϑ ∈ C. Then, {PCψn}∞n=1 converges strongly.
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Lemma 2.5. ([24]) Let H be a real Hilbert space, ∅ 6= C ⊂ H be closed and
convex and = : C −→ C be nonexpansive. Then,

(1) I −= : C −→ H is
1

2
- inverse strongly monotone; that is,

1

2
‖(I −=)℘− (I −=)~‖2 ≤ 〈℘− ~, (I −=)℘− (I −=)~〉, (2.1)

for all ℘, ~ ∈ C
(2) In addition, if F (=) 6= ∅, (i − =) is demiclosed; that is, for every

sequence {℘n}∞n=1 weakly convergent to p such that ℘n − =℘n → 0 as
n→∞, it follows that p ∈ F (=).

In [24], Osilike and Isogugu defined the averaged mapping =δ as follows

=δ = (1− δ)I + δ= = I − δ(I −=), (2.2)

where δ ∈ (0, 1) and = is a nonexpansive mapping. Furthermore, Bryne [5]
and subsequently Moudafi [16] established some properties of the averaged
mappings; in particular, they proved that =δ is nonexpansive mapping. In this
paper, inspired by [3, 14], we introduce an averaged type mapping =δβ at below
for nonlinear mapping = : C −→ C; we observe that F (=) = F (=δ) = F (=δβ).
Also, we observe that if = is an σ-enriched nonspreading self-mapping of C and
F (=) 6= ∅, then the averaged type mapping =δβ is quasi-nonexpansive and as
a consequence, the set of fixed points of F (=δβ) is closed and convex.

Lemma 2.6. ([1, 31]) Let {νn}∞n=1 be a sequence of non-negative real real
numbers validating the following inequality

νn+1 ≤ (1− πn)νn + πnµn + ϑn,

where {πn}∞n=1 and {µn}∞n=1 are real sequences such that

(i) {πn}∞n=1 ⊂ [0, 1] and
∞∑
n=0

πn =∞;

(ii) lim supn→∞ µn ≤ 0 or
∞∑
n=0
|µn| <∞;

(iii) ϑn ≥ 0,
∞∑
n=0

ϑn <∞.

Then, lim
n→∞

νn = 0.

Finally, we state the following fundamental result proved by Mainge which
played a pivotal role in establishing the proof of our main results.

Lemma 2.7. ([28]) Let {γn}∞n=0 be a sequence of real numbers for which we
can find a subsequence {γnk

}∞k=0 such that γk < γk+1 for all k ∈ N. Consider
the sequence of integers {τ(n)}∞n=1 given by

τn = max{i ≤ n : γi ≤ γi+1}. (2.3)
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Then, {τ(n)}∞n=1 is a nondecreasing sequence, for all n ≥ n0, validating the
following requirements

(i) lim
n→∞

τ(n) =∞;

(ii) γτ(n) < γtau(n), ∀n ≥ n0;
(iii) γn < γτ(n), ∀n ≥ n0.

Lemma 2.8. (Opial property [23]) Let H be a real Hilbert space. Suppose
℘n ⇀ ω. Then the inequality below holds:

lim inf
n→∞

‖℘n − ~‖ > lim inf
n→∞

‖℘n − ω‖, ∀~ ∈ H, ~ 6= ω.

Lemma 2.9. ([14]) Let H be a real Hilbert space. Then, the following identity
holds.

2〈ψ − φ, z − ω〉 = ‖ψ − ω‖2 + ‖φ− z‖2 − ‖ψ − z‖2 − ‖φ− ω‖2

for all ψ, φ, ω, z ∈ H.

3. Results and discussion

Throughout this section, H, C, F (ð) and F (=) shall denote a real Hilbert
space, a nonempty closed and convex subset of H, the set of fixed point of
enriched nonexpansive mapping ð and the set of fixed point of enriched non-
spreading mapping =, respectively.

In the sequel, we state the following definition.

Definition 3.1. ([13]) Let H be as described above. A mapping = with
dormain D(ð) and range R(=) in H is known as σ-enriched nonspreading
(σ-ESNM, for short) in the sense Kurokawa and Takahashi if there exists
σ ∈ [0,∞) such that for all (ψ, φ) ∈ D(=), the inequality

2‖σ(ψ−φ)+=ψ−=φ‖2 ≤ ‖σ(ψ−φ)+=ψ−φ‖2 +‖σ(ψ−φ)+ψ−=φ‖2. (3.1)

The following lemmas are some of the characterization of enriched non-
spreading mapping.

Lemma 3.2. Let H and C be as described above. Then a mapping = : C −→ C
is an σ-enriched nonspreading if and only if

2‖σ(ψ−φ)+=ψ−=φ‖2 ≤ ‖σ(ψ−φ)+=ψ−φ‖2 +‖σ(ψ−φ)+ψ−=φ‖2. (3.2)
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Proof. We have that

2‖σ(ψ − φ) + =ψ −=φ‖2

≤ ‖σ(ψ − φ) + =ψ − φ‖2 + ‖σ(ψ − φ) + ψ −=φ‖2

= ‖[(σ + =)ψ − (σ + 1)ψ] + (σ + 1)(ψ − φ)‖2

+ ‖(σ + 1)ψ − (σ + =)ψ + (σ + =)ψ − (σ + =)φ‖2

= ‖(σ + =)ψ − (σ + 1)ψ‖2 + 2(σ + 1)〈(σ + =)ψ − (σ + 1)ψ,ψ − φ〉
+ (σ + 1)2‖ψ − φ‖2 + ‖(σ + 1)ψ − (σ + =)ψ‖2

+ 2〈(σ + 1)ψ − (σ + =)ψ, (σ + =)ψ − (σ + =)φ〉
+ ‖(σ + =)ψ − (σ + =)φ‖2

if and only if

2‖σ(ψ − φ) + =ψ −=φ‖2 ≤ (σ + 1)2‖ψ − φ‖2 + 2‖=)ψ − ψ‖2

+ 2(σ + 1)〈=ψ − ψ,ψ − φ〉
+ 2〈ψ −=ψ, (σ + =)ψ − (σ + =)φ〉
+ ‖(σ + =)ψ − (σ + =)φ‖2

if and only if

2‖σ(ψ − φ) + =ψ −=φ‖2 ≤ (σ + 1)2‖ψ − φ‖2 + 2‖=)ψ − ψ‖2

+ ‖(σ + =)ψ − (σ + =)φ‖2

− 2〈ψ −=ψ, (ψ −=ψ)− (y −=φ)〉

if and only if

‖σ(ψ − φ) + =ψ −=φ‖2 ≤ (σ + 1)2‖ψ − φ‖2 + 2〈ψ −=ψ, φ−=φ〉.

This completes the proof. �

Now, by setting σ =
1

β
− 1, for some β ∈ (0, 1], we obtain from (3.2) that

‖σ(ψ − φ) + =ψ −=φ‖2 ≤ (σ + 1)2‖ψ − φ‖2 + 2〈ψ −=ψ, φ−=φ〉
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if and only if∥∥∥( 1

β
− 1
)

(ψ − φ) + =ψ −=φ
∥∥∥2
≤ 1

β2
‖ψ − φ‖2 + 2〈ψ −=ψ, φ−=φ〉

if and only if

‖β(ψ − φ) + β=ψ − β=φ‖2 ≤ ‖ψ − φ‖2 + 2〈ψ − [(1− β)ψ

+ β=ψ], φ− [(1− β)φ+ β=φ]〉. (3.3)

Remark 3.3. Observe that if σ = 0 in (3.2) (or β = 1 (3.3)), we obtain
an important class nonspreading mappings studied in [13]. Again, if we take
=β = (I − β)I + β=, then (3.3) reduces to

‖=βψ −=βφ‖2 ≤ ‖ψ − φ‖2 + 2〈ψ −=βψ, φ−=βφ〉. (3.4)

Therefore, the averaged operator =β is a nonspreading mapping whenever =
is an σenriched nonspreading mapping.

Remark 3.4. Any nonspreading mapping = validating (3.1) with σ = 0 is
known as 0-enriched nonspreading.

Lemma 3.5. Let H and C be as described above and let = : C −→ C be an
σ-enriched nonspreading mapping. Then, F (=) is closed and convex.

Proof. Let {ψn}∞n=1 be a sequence in F (=) which converges to ψ. We want to
show that ψ ∈ F (=). Now, since

‖=βψ − ψ‖ = β‖=ψ − ψ‖
≤ β‖=ψ −=ψn‖+ β‖ψn − ψ‖
= β‖σ(ψ − ψn) + =ψ −=ψn − σ(ψ − ψn)‖+ β‖ψn − ψ‖
≤ β‖σ(ψ − ψn) + =ψ −=ψn‖+ β(σ + 1)‖ψn − ψ‖ (3.5)

and since = is an σ-enriched nonspreading mapping, we have

‖σ(ψ − ψn) + =ψ −=ψn‖2 ≤ (σ + 1)2‖ψn − ψ‖2

+ 2〈ψ −=ψ,ψn −=ψn〉
= (σ + 1)2‖ψn − ψ‖2. (3.6)

(3.5) and (3.6) imply that

0 ≤ ‖=ψ − ψ‖(σ + 1)‖ψn − ψ‖ → 0 as n→∞. (3.7)

Hence, ψ ∈ F (=).
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Next, let ϑ1, ϑ2 ∈ F (=) and λ ∈ [0, 1]. We prove that λϑ1+(1−λ)ϑ2 ∈ F (=).
Let ψ = λϑ1+(1−λ)ϑ2. Then, ϑ1−ψ = (1−λ)(ϑ1−ϑ2) and ϑ2−ψ = λ(ϑ2−ϑ1).
Since

β2‖=ψ − ψ‖2

= ‖ψ −=βψ‖2

= ‖λϑ1 + (1− λ)ϑ2 −=βψ‖2

= ‖λ(ϑ1 −=βψ) + (1− λ)(ϑ2 −=βψ)‖2

= λ‖ϑ1 −=βψ‖2 + (1− λ)‖ϑ2 −=βψ‖2 − λ(1− λ)‖ϑ1 − ϑ2‖2

= λ‖(1− β)ϑ1 + β=ϑ1 − [(1− β)ψ + β=ψ]‖2

+ (1− λ)‖(1− β)ϑ2 + β=ϑ2 − [(1− β)ψ + β=ψ]‖2

− λ(1− λ)‖ϑ1 − ϑ2‖2

= λ‖(1− β)(ϑ1 − ψ) + β(=ϑ1 −=ψ)‖2

+ (1− λ)‖(1− β)(ϑ2 − ψ) + β(=ϑ2 −=ψ)‖2

− λ(1− λ)‖ϑ1 − ϑ2‖2

=
λ

(σ + 1)2
‖σ(ϑ1 − ψ) + =ϑ1 −=ψ‖2

+
1− λ

(σ + 1)2
‖σ(ϑ2 − ψ) + =ϑ2 −=ψ‖2 − λ(1− λ)‖ϑ1 − ϑ2‖2

≤ λ

(σ + 1)2
[(σ + 1)2‖ϑ1 − ψ‖2 + 2〈ϑ1 −=ϑ1, ψ −=ψ〉]

+
1− λ

(σ + 1)2
[(σ + 1)2‖ϑ2 − ψ‖2 + 2〈ϑ2 −=ϑ2, ψ −=ψ]〉

− λ(1− λ)‖ϑ1 − ϑ2‖2

= λ‖ϑ1 − ψ‖2 + (1− λ)‖ϑ2 − ψ‖2 − λ(1− λ)‖ϑ1 − ϑ2‖2

= λ(1− λ)[1− λ+ λ]‖ϑ1 − ϑ2‖2 − λ(1− λ)‖ϑ1 − ϑ2‖2,

it follows that

β2‖=ψ − ψ‖2 ≤ 0.

Therefore, ψ = =ψ implies that ψ ∈ F (=) as required result. �

Proposition 3.6. Let H be a real Hilbert space, ∅ 6= C ⊂ H and = : C −→ C
be an σ-enriched nonspreading mapping. Then, (I −=) is demiclosed at 0.

Proof. Let {ψn}∞n=0 be a sequence in Ω which converges weakly to ϑ and
{ψn − =ψn}∞n=0 converges strongly to 0. We want to show that ϑ ∈ F (=).
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Now, since {ψn}∞n=0 converges weakly, it is bounded.
For each ψ ∈ H, define f : H −→ [0,∞) by

f(ψ) = lim sup
n→∞

‖ψn − ψ‖2.

Then, using Lemma 2.1 (iv), we get

f(ψ) = lim sup
n→∞

‖ψn − ϑ‖2 + ‖ϑ− ψ‖2, ∀ψ ∈ H.

As consequence,
f(ψ) = f(ϑ) + ‖ϑ− ψ‖2, ∀ψ ∈ H

and

f(=β) = f(ϑ) + ‖ϑ−=βϑ‖2

= f(ϑ) +
1

(σ + 1)2
‖ϑ−=ϑ‖2, ∀ψ ∈ H. (3.8)

Observe that

f(=β) = lim sup
n→∞

‖ψn −=βϑ‖2

= lim sup
n→∞

‖ψn −=βψn + =βψn −=βϑ‖2

= lim sup
n→∞

‖ψn − [(1− β)ψn + β=ψn] + (1− β)ψn

+ β=ψn − [(1− β)ϑ+ β=ϑ]‖2

= lim sup
n→∞

‖β(ψn −=ψn) + (1− β)(ψn − ϑ) + β(=ψn −=ϑ)‖2

= lim sup
n→∞

∥∥∥ σ

σ + 1
(ψn − ϑ) +

1

σ + 1
(=ψn −=ϑ)

∥∥∥2

=
1

(σ + 1)2
lim sup
n→∞

‖σ(ψn − ϑ) + =ψn −=ϑ‖2

≤ 1

(σ + 1)2
lim sup
n→∞

[(σ + 1)2‖ψn − ϑ‖2 + 2〈ψn −=ψn, ϑ−=ϑ〉]

= lim sup
n→∞

‖ψn − ϑ‖2 = f(ϑ). (3.9)

(3.8) and (3.9) imply
‖ϑ−=ϑ‖ ≤ 0,

so that ϑ ∈ F (=) as required. �

Proposition 3.7. Let H be a real Hilbert space, ∅ 6= C ⊂ H and = : C −→ C be
an σ-enriched nonspreading mapping such that F (=) 6= ∅. Then, the averaged
type operator

=δβ = I − δ(I −=β) = (1− δ)I + δ[(1− β) + β=]
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is quasi-nonexpansive mapping, where I is the identity mapping.

Proof. Set =β = (1− β) + β= so that by Lemma 2.1(iii), we have

‖=δβψ −=δβφ‖2 = ‖(1− δ)(ψ − φ) + δ(=βψ −=φ)‖2

= (1− δ)‖ψ − φ‖2 + δ‖=βψ −=βφ‖2

− δ(1− δ)‖(ψ −=βψ)− (φ−=βφ)‖2

= (1− δ)‖ψ − φ‖2 + δ‖(1− β)(ψ − φ) + =ψ −=βφ‖2

− δ(1− δ)‖(ψ −=βψ)− (φ−=βφ)‖2

= (1− δ)‖ψ − φ‖2 +
δ

(σ + 1)2
‖σ(ψ − φ) + =ψ −=φ‖2

− δ(1− δ)
(σ + 1)2

‖ψ −=ψ − (φ−=φ)‖2

= (1− δ)‖ψ − φ‖2 +
δ

(σ + 1)2
‖σ(ψ − φ) + =ψ −=φ‖2

− δ(1− δ)
(σ + 1)2

‖ψ −=ψ − (φ−=φ)‖2

≤ (1− δ)‖ψ − φ‖2

+
δ

(σ + 1)2
[(σ + 1)2‖ψ − φ‖2 + 2〈ψ −=ψ, φ−=φ〉]

− δ(1− δ)
(σ + 1)2

‖ψ −=ψ − (φ−=φ)‖2

= (1− δ)‖ψ − φ‖2 +
2δ

(σ + 1)2
〈ψ −=ψ, φ−=φ〉

− δ(1− δ)
(σ + 1)2

‖ψ −=ψ − (φ−=φ)‖2. (3.10)

Since

〈ψ −=δβψ, φ−=δβφ〉 = 〈ψ − [δψ + (1− δ)=βψ], φ− [δφ+ (1− δ)=βφ]〉
= (1− δ)2〈ψ=βψ, φ−=βφ〉

and

〈ψ −=βψ, φ−=βφ〉 = 〈ψ − [(1− β)ψ + β=], φ− [(1− β)φ+ β=φ]〉
= β2〈ψ −=ψ, φ−=φ〉,
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it follows that

〈ψ −=ψ, φ=φ〉 =
1

β2(1− δ)2
〈ψ −=δβψ, φ−=δβφ〉

=
(σ + 1)2

(1− δ)2
〈ψ −=δβψ, φ−=δβφ〉. (3.11)

(3.10) and (3.11) imply

‖=δβψ −=δβφ‖2 ≤ ‖ψ − φ‖2 +
2δ

(1− δ)
〈ψ=δβψ, φ−=δβφ〉. (3.12)

In particular, choosing φ = ϑ, where ϑ ∈ F (=) = F (=β) = F (=δβ), we get

‖=δβψ −=δβφ‖ ≤ ‖ψ − φ‖ (3.13)

as required result. �

Lemma 3.8. Let H and C be as described above. Let = : C −→ C be an
σ-enriched nonspreading and let

A = (σ + 1)I − (σ + =).

Then,

‖Aψ −Aφ‖2 ≤ (σ + 1)〈ψ − φ,Aψ −Aφ〉+
1

2
(‖Aψ‖2 + ‖Aφ‖2)

for all ψ, φ ∈ C.

Proof. Put A = (σ + 1)I − (σ + =). Then, for any ψ, φ ∈ C, we obtain

‖Aψ −Aφ‖2 = 〈Aψ −Aφ,Aψ −Aφ〉
= 〈(σ + 1)(ψ − φ)− [(σ + =)ψ − (σ + =)φ],Aψ −Aφ〉
= (σ + 1)〈ψ − φ,Aψ −Aφ〉
− 〈(σ + =)ψ − (σ + =)φ,Aψ −Aφ〉. (3.14)

Also, from Lemma 2.9, we obtain

2〈(σ + =)ψ − (σ + =)φ,Aψ −Aφ〉
= 2〈(σ + =)ψ − (σ + =)φ, (σ + 1)(ψ − φ)− (σ + =)ψ

− (σ + =)φ〉
= 2〈(σ + =)ψ − (σ + =)φ, (σ + 1)ψ − (σ + 1)φ〉
− ‖σ(ψ − φ) + =ψ −=φ‖2
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≥ ‖(σ + =)ψ − (σ + 1)φ‖2 + ‖(σ + =)φ− (σ + 1)ψ‖2

− ‖(σ + =)ψ − (σ + 1)ψ‖2 − ‖(σ + =)φ− (σ + 1)φ‖2

− [‖(σ + =)ψ − (σ + 1)φ‖2 + ‖(σ + 1)ψ − (σ + =)φ‖2]

= ‖(σ + =)ψ − (σ + 1)φ‖2 + ‖(σ + =)φ− (σ + 1)ψ‖2

− ‖(σ + =)ψ − (σ + 1)ψ‖2 − ‖(σ + =)φ− (σ + 1)φ‖2

− [‖(σ + =)ψ − (σ + 1)φ‖2 + ‖ − [(σ + =)φ− (σ + 1)ψ]‖2]

= ‖(σ + =)ψ − (σ + 1)φ‖2 + ‖(σ + =)φ− (σ + 1)ψ‖2

− ‖(σ + =)ψ − (σ + 1)ψ‖2 − ‖(σ + =)φ− (σ + 1)φ‖2

− [‖(σ + =)ψ − (σ + 1)φ‖2 + ‖(σ + =)φ− (σ + 1)ψ‖2]

= −‖ − [(σ + 1)ψ − (σ + =)ψ]‖2

− ‖ − [(σ + 1)φ− (σ + =)φ]‖2

= −‖(σ + 1)ψ − (σ + =)ψ‖2 − ‖(σ + 1)φ− (σ + =)φ‖2

= −‖Aψ‖2 − ‖Aφ‖2.

So, we obtain

‖Aψ −Aφ‖2 ≤ (σ + 1)〈ψ − φ,Aψ −Aφ〉+
1

2
(‖Aψ‖2 + ‖Aφ‖2).

This completes the proof. �

Example 3.9. Let X = R and C =
[1

2
, k
]
, where

1

2
< k < 1. For each ψ ∈ C,

let = : C −→ C be defined by

=ψ =
k

2k − 1
(k − ψ).

Then, = is an enriched nonspreading mapping. To see this, observe that since

|σ(ψ − φ) + =ψ −=φ|2 =
∣∣∣σ(ψ − φ) +

k

2k − 1
(k − ψ)− k

2k − 1
(k − φ)

∣∣∣2
=
∣∣∣σ(ψ − φ) +

k

2k − 1
(ψ − φ)

∣∣∣2
=
(
σ − k

2k − 1

)2
|ψ − φ|2,

〈ψ −=ψ, φ−=φ〉 =
1

2k − 1
〈2kψ − ψ − k2 + kψ, 2kφ− φ− k2 + kφ〉

=
1

2k − 1
〈(3k − 1)ψ − k2, (3k − 1)φ− k2〉 > 0
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and (
σ − k

2k − 1

)2
|ψ − φ|2 < (σ + 1)2|ψ − φ|2,

it follows that

(σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉 > |σ(ψ − φ) + =ψ −=φ|2,
which in turn satisfies condition (3.2).

Now, by noticing that
k

2k − 1
> 1,

1

2k − 1
> 1, that is, k < 1, we have, for

any ψ, φ ∈ C and σ = 0, that

|σ(ψ − φ) + =ψ −=φ| = (σ + 1)k

2k − 1
|ψ − φ| > (σ+)|ψ − φ|.

Thus, = is not L-Lipschitzian with L = 1.

Example 3.10. Let Bρ{ψ ∈ H : ‖ψ‖ ≤ ρ} for ρ > 0 and C = B2 ⊂ H and
define a mapping = : C −→ C by

=ψ =

{
ψ, ψ ∈ B2

PB1ψ, ψ ∈ \B2,

where PA is a metric projection of H onto A. Then, = is an enriched non-
spreading mappings which does not admit continuity. Obviously, F (=) = B2.

Let ψ, φ ∈ C. It suffices to check the case ψ ∈ C \ B2, φ ∈ B2. Now, since
PB1 is nonexpansive (and hence 0-enriched nonexpansive) and φ−=φ = 0, it
follows that

‖σ(ψ − φ) + =ψ −=φ‖2 = ‖σ(ψ − φ) + PB1ψ − φ‖2

= ‖σ(ψ − φ) + PB1ψ − PB1φ‖2

≤ (σ+)2‖ψ − φ‖2

= (σ+)2‖ψ − φ‖2 + 2〈ψ −=ψ, φ−=φ〉.
Therefore, = is an enriched nonspreading mapping. Clearly, = is not continu-

ous. In fact, for ψ0 ∈ ∂B2, φ0 ∈ ∂C, consider ψn =
(
1 − 1

n

)
ψ0 +

1

n
ψ0 ∈ C for

each ≥ 1. Then, ψn → ψ0 but =ψn = PB1ψn 9 =ψ0 because ‖PB1ψn = 1 and
‖ψ0‖ = 2.

Remark 3.11. Note that = is not continuous in the last example. Hence, = is
not uniformly continuous. In other words, the class of enriched nonspreading
mappings is generally not Lipschitzian.

The following examples demonstrates the fact that the class of enriched
nonexpansive and the class enriched nonspreading mappings are independent.



Halpern’s iteration for approximating fixed points of a new class of mappings 689

Example 3.12. Let R ⊃ C =
[1

2
, 2
]

be endowed with the usual norm and let

= : C −→ C be define by =ψ =
1

ψ
for all ψ ∈ C. Then,

(i) = is not nonexpansive,

(ii) = is a
3

2
-enriched nonexpansive,

(iii) F (=) = {1},
(iv) = is not

3

2
-enriched nonspreading.

To validate (i)-(iv),

(i) assume = is nonexpansive. Then, by the definition of nonexpansive
mapping, we should have

|=ψ −=φ| =
∣∣∣φ− ψ
ψφ

∣∣∣ ≤ |ψ − φ|, ∀ψ, φ ∈ C,

which, when ψ =
1

2
and φ = 1, yields a contradiction.

(ii) for all ∀ψ, φ ∈ C,

|σ(ψ − φ) + =ψ −=φ| =
∣∣∣σ(ψ − φ) +

1

ψ
− 1

φ

∣∣∣
=
∣∣∣σ(ψ − φ) +

φ− ψ
ψφ

∣∣∣
=
(
σ − 1

ψφ

)
|ψ − φ|.

Observe that for any σ ≥ 3

2
, the last identity becomes

|σ(ψ − φ) + =ψ −=φ| = (σ + 1)|ψ − φ|, ∀ψ, φ ∈ C,

and as such validates our conclusion that = is a
3

2
-enriched nonexpan-

sive
(iii) F (=) = {1} is not difficult to see.
(iv) since every σ-enriched nonexpansive mapping satisfies σ-enriched Lip-

schitz condition (see, for instance, [26])

‖σ(ψ − φ) + =ψ −=φ‖ = (σ + 1)L‖ψ − φ‖, ∀ψ, φ ∈ C,

where L is the Lipschitz constant, and since every σ-enriched non-
spreading mapping is generally not Lipschitzian, it follows from (ii)
that = is not an σ-enriched nonspreading mapping.
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Example 3.13. Let X = R denote the set of real numbers with the usual
norm. For each ψ ∈ R, let the mapping = be given by

=ψ =

{
0, if ψ ∈ (−∞, 2]

1, if ψ ∈ (2,∞).

Then, for all ψ, φ ∈ (−∞, 2] and for all σ ∈ [0,∞), we have

(σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉 = (σ2 + 2σ + 1)|ψ − φ|2 + 2ψφ

= (σ2 + 2σ)|ψ − φ|2 + ψ2 + φ2

≥ σ2|ψ − φ|2

= |σ(ψ − φ) + =ψ −=φ|2.

Also, for all ψ, φ ∈ (2,∞) and for all σ ∈ [0,∞), we have

(σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉 = (σ + 1)2|ψ − φ|2 + 2(ψ − 1)(φ− 1)

> σ2|ψ − φ|2

= |σ(ψ − φ) + =ψ −=φ|2.

Finally, if ψ ∈ (−∞, 2] and φ ∈ (2,∞), then for all σ ∈ [0,∞), we get

(σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉 = (σ2 + 2σ)|ψ − φ|2 + ψ2 + φ2 − 2ψ

> |σ(ψ − φ)− 1|2

= |σ(ψ − φ) + =ψ −=φ|2.

Thus, for all ψ, φ ∈ X for all for all σ ∈ [0,∞), we obtain

|σ(ψ − φ) + =ψ −=φ|2 ≤ (σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉.

Hence, = is σ-enriched nonspreading. Since every σ-enriched nonexpansive
mapping = must satisfy σ-enriched Lipschitz condition (see, for instance, [26])

‖σ(ψ − φ) + =ψ −=φ‖ = (σ + 1)L‖ψ − φ‖, ∀ψ, φ ∈ C,

where L is the Lipschitz constant, it is not difficult to see that = is not σ-
enriched nonexpansive mapping.

The next example shows that an σ-enriched nonspreading mapping needs
not be nonspreading so that the class of σ-enriched nonspreading mappings
properly contains the class of nonspreading mappings.

Example 3.14. Let R denote the reals with the usual norm and suppose the
mapping = : R −→ R is given by

=ψ = −ψ.
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Then, it is an σ-enriched nonspreading mapping. Indeed, for all ψ, φ ∈ R with

|σ(ψ − φ) + =ψ −=φ|2 = (σ − 1)2|ψ − φ|2

and

(σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉 = (σ + 1)2|ψ − φ|2 + 2〈2ψ, 2φ〉
= (σ + 1)2|ψ − φ|2 + 8ψφ,

there exists an σ ∈ [1,∞) such that

|σ(ψ − φ) + =ψ −=φ|2 ≤ (σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉.

However, = is not nonspreading, for if ψ 6= 0 and φ = −ψ, then

|=ψ −=φ|2 = 4ψ2 > −4ψ2 = |ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉.

Remark 3.15. If F (=) 6= ∅ in (3.2), then we obtain a class of mapping called
σ-enriched quasi-nonexpansive mappings. The example below shows that this
class of mappings properly contains the classes of σ-enriched nonspreading
mappings and σ-enriched nonexpansive mappings.

Example 3.16. Let R denotes the reals and R ⊃ C = [−π, π]. Let a mapping
= : C −→ C be given by

=ψ = ψ cos(ψ), ψ ∈ C.

Observe that F (=){0}. Also, for all ψ ∈ C,

|σ(ψ − 0) + =ψ − 0| = |σψ + ψ cos(ψ)|
≤ σ|ψ|+ |ψ cos(ψ)|
≤ σ|ψ|+ |ψ|
= (σ + 1)|ψ − 0|.

Hence, = is an σ-enriched quasi-nonexpansive mapping. However, = is neither
σ-enriched nonspreading mappings nor σ-enriched nonexpansive mappings. To

see this, take ψ = π and φ =
π

2
. Then,

|σ(ψ − φ) + =ψ −=φ|2 =
∣∣∣σπ

2
− π

∣∣∣2 =
1

4
(σ + 1)2π2

>
1

4
(σ + 1)2π2 − 2π2

= (σ + 1)2|ψ − φ|2 + 2〈ψ −=ψ, φ−=φ〉



692 I. K. Agwu, G. A. Okeke, H. O. Olaoluwa and J. K. Kim

and

|σ(ψ − φ) + =ψ −=φ| = 1

2
(σ + 2)πn

>
1

2
(σ + 1)π

= (σ + 1)|ψ − φ|.

Therefore, = is neither σ-enriched nonspreading mappings nor σ-enriched non-
expansive mappings, respectively.

Lemma 3.17. Let H be a real Hilbert space, ∅ 6= C ⊂ H, u ∈ C fixed, = an
σ-enriched nonspreading mapping from C into itself and ð an σ-enriched non-
expansive mapping such that F (=) ∩ F (ð) 6= ∅. Consider a bounded sequence
{φn}∞n=1. Then,

(1) if ‖φn − ðφn‖ → 0 as n→∞, then

lim sup
n→∞

〈u− ϑ, φn − ϑ〉 ≤ 0, (3.15)

where ϑ ∈ PF (ð)u is the unique fixed point in F (ð that satisfies the
variational inequality

〈u− ϑ, ψ − ϑ〉 ≤ 0, ∀ψ ∈ F (ð). (3.16)

(2) if ‖φn −=φn‖ → 0 as n→∞, then

lim sup
n→∞

〈u− ϑ, φn − ϑ〉 ≤ 0, (3.17)

where ϑ ∈ PF (=)u is the unique fixed point in F (=) that satisfies the
variational inequality

〈u− ϑ, ψ − ϑ〉 ≤ 0, ∀ψ ∈ F (=). (3.18)

(3) if ‖φn − ðφn‖ → 0 as n→∞ and ‖φn −=φn‖ → 0 as n→∞, then

lim sup
n→∞

〈u− ϑ0, φn − ϑ0〉 ≤ 0, (3.19)

where ϑ0 ∈ PF (ð)∩F (=)u is the unique fixed point in F (=) that satisfies
the variational inequality

〈u− ϑ0, ψ − ϑ0〉 ≤ 0, ∀ψ ∈ F (=). (3.20)

Proof. (1) Let ϑ satisfy (3.16). Let {φnk
}∞k=1 be a subsequence of {φn}∞n=1 such

that φnk
⇀ ν as k → ∞ (this is possible by the boundedness of {φn}∞n=1).

Applying the hypothesis ‖φn−ðφn‖ → 0 as n→∞, and by the demiclosedness
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of I − ð at 0, we obtain that ν ∈ F (ð) and

lim sup
n→∞

〈u− ϑ, φn − ϑ〉 = lim
k→∞
〈u− ϑ, φnk

− ϑ〉

= 〈u− ϑ, ν − ϑ〉
≤ 0.

(2) The proof is the same as in (1) since = is demiclosed at 0.

(3) {φnk
}∞k=1 be a subsequence of {φn}∞n=1 such that φnk

⇀ ω as k →∞. Then,
by the demiclosedness of I − ð and I − = at 0, and applying the hypotheses
‖φn − ðφn‖ → 0 as n → ∞ and ‖φn − =φn‖ → 0 as n → ∞, we get that
ω ∈ F (ð) ∩ F (=). So,

lim sup
n→∞

〈u− ϑ0, φn − ϑ0〉 = lim
k→∞
〈u− ϑ0, φnk

− ϑ0〉

= 〈u− ϑ0, ω − ϑ0〉
≤ 0.

�

Lemma 3.18. Let u ∈ C be an anchor and {ψn}∞n=1 be the sequence given by

ψn+1 = ℘nu+ (1− ℘n)Znψn, (3.21)

where Zn = µnðδβ + (1− µn)=δβ . Then,

(1) Zn is quasi-nonexpansive for all n ∈ N.

(2) {ψn}∞n=1, {ðψn}∞n=1, {=ψn}∞n=1, {ðβψn}∞n=1, {=βψn}∞n=1, {ðδβψn}∞n=1,
{=δβψn}∞n=1 and {Zn}∞n=1 are bounded sequences.

Proof. Since =δβ and ðδβ are quasi-nonexpansive, it follows that Zn is quasi-
nonexpansive giving the fact convex combination quasi-nonexpansive map-
pings is quasi-nonexpansive. The boundedness of {ψn}∞n=1 follows directly
from the nonexpansivity of Zn. Indeed, let ϑ ∈ F (ð) ∩ F (=). Then, from
(3.21), we have

‖ψn+1 − ϑ‖ = ‖℘n(u− ϑ) + (1− ℘n)(Znψn − ϑ)‖
≤ ℘n‖u− ϑ‖+ (1− ℘n)‖Znψn − ϑ‖
≤ ℘n‖u− ϑ‖+ (1− ℘n)‖ψn − ϑ‖. (3.22)

Using the fact that

‖ψ1 − ϑ‖ = max{‖u− ϑ‖, ‖ψ1 − ϑ‖},

and, by induction,

‖ψn − ϑ‖ = max{‖u− ϑ‖, ‖ψ1 − ϑ‖},
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it follows from (3.22) that

‖ψn+1 − ϑ‖ ≤ ℘n‖u− ϑ‖+ (1− ℘n) max{‖u− ϑ‖, ‖ψ1 − ϑ‖}
≤ max{‖u− ϑ‖, ‖ψ1 − ϑ‖}+ (1− ℘n) max{‖u− ϑ‖, ‖ψ1 − ϑ‖}
= max{‖u− ϑ‖, ‖ψ1 − ϑ‖}.

Consequently, {ψn}∞n=1 is bounded. The boundedness of the rest of the se-
quences [{ðψn}∞n=1, {=ψn}∞n=1, {ðβψn}∞n=1, {=βψn}∞n=1{ðδβψn}∞n=1, {=δβψn}∞n=1

and {Zn}∞n=1] follows directly from the boundedness of {ψn}∞n=1 and by the
quasi-nonexpansivity of involved mappings. �

Now, we establish our strong convergence theorem.

Theorem 3.19. Let H be a real Hilbert space and let ∅ 6= C be closed and
convex. Let = : C −→ C be σ-enriched nonspreading mapping and = : C −→ C
be σ-enriched nonexpansive mapping such that F (=) ∩ F (ð) 6= ∅. Let =δβ
and ðδβ be averaged type mappings, where =δβ = (1 − δ) + δ=β and ðδβ =
(1− δ) + δðβ. Suppose that {℘n}∞n=1 is a real sequence in (0, 1) satisfying

(i) lim
n→∞

℘n = 0,

(ii)
∞∑
n=1

℘n =∞.

Let {µn}∞n=1 be a sequence in [0, 1] and define the sequence {ψn}∞n=1 as follows

ψn+1 = ℘nu+ (1− ℘n)[µnðδβψn + (1− µn)=δβψn]. (3.23)

Then, the following results hold:

(1) If
∞∑
n=1

(1 − µn) < ∞, then {ψn}∞n=1 converges strongly to ϑ = PF (ð)u

which is the unique solution in F (ð) of the variational inequality 〈u−
ϑ, ψ − ϑ〉 ≤ 0 for all ψ ∈ F (ð).

(2) If
∞∑
n=1

µn <∞, then {ψn}∞n=1 converges strongly to ϑ = PF (=)u which is

the unique solution in F (=) of the variational inequality 〈u−ϑ, ψ−ϑ〉 ≤
0 for all ψ ∈ F (=).

(3) If lim inf
n→∞

µn(1 − µn) > 0, then {ψn}∞n=1 converges strongly to ϑ0 =

PF (ð)∩F (=)u which is the unique solution in F (ð) ∩ F (=) of the varia-
tional inequality 〈u− ϑ0, ψ − ϑ0〉 ≤ 0 for all ψ ∈ F (ð) ∩ F (=).

Proof. (1) Set Qn = (1− ℘n)(=δβψn + ðδβψn) so that (3.23) becomes

ψn+1 = ℘nu+ (1− ℘n)ðδβψn + (1− µn)Qn, (3.24)

where Qn is bounded, that is, ‖Qn‖ ≤ O(1). Firstly, we prove that lim
n→∞

‖ψn−
ðδβψn‖ = 0. Let ϑ ∈ F (ð) = F (ðβ) = F (ðδβ) be the unique solution in F (ð)
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of the variational inequality

〈u− ϑ, ψ − ϑ〉 ≤ 0. (3.25)

Then, we get from (3.24) that

‖ψn+1 − ϑ‖2 = ‖℘nu+ (1− ℘n)ðδβψn + (1− µn)Qn − ϑ‖2

= ‖[(1− ℘n)(ðδβψn − ψn) + ψn − ϑ]

+ [℘n(u− ψn) + (1− µn)Qn]‖2.
The last identity together with Lemma 2.1 gives

‖ψn+1 − ϑ‖2 ≤ ‖(1− ℘n)δβ(ðψn − ψn) + ψn − ϑ‖2

+ 2〈℘n(u− ψn) + (1− µn)Qn, ψn+1 − ϑ〉
≤ ‖(1− ℘n)δβ(ðψn − ψn) + ψn − ϑ‖2

+ 2℘n〈(u− ψn), ψn+1 − ϑ〉+ 2(1− µn)〈Qn, ψn+1 − ϑ〉
≤ (1− ℘n)2δ2β2‖ðψn − ψn‖2 + ‖ψn − ϑ‖2

− 2(1− ℘n)δβ〈ψn − ϑ, ψn − ðψn〉
+ 2℘n‖u− ψn‖‖ψn+1 − ϑ‖+ 2(1− µn)‖Qn‖‖ψn+1 − ϑ‖
≤ (1− ℘n)2δ2β2‖ðψn − ψn‖2 + ‖ψn − ϑ‖2

− 2(1− ℘n)δβ〈ψn − ϑ, (I − ð)ψn − (I − ð)ϑ〉
+ 2℘n‖u− ψn‖‖ψn+1 − ϑ‖
+ 2(1− µn)‖Qn‖‖ψn+1 − ϑ‖
≤ ‖ψn − ϑ‖2 + (1− ℘n)2δ2β2‖ðψn − ψn‖2

− (1− ℘n)δβ‖(I − ð)ψn − (I − ð)ϑ‖
+ ℘nO(1) + (1− µn)O(1)

= ‖ψn − ϑ‖2 + (1− ℘n)δβ[1− (1− ℘n)δβ]‖ðψn − ψn‖2

+ ℘nO(1) + (1− µn)O(1). (3.26)

and from which we obtained

0 ≤ (1− ℘n)δβ[1− (1− ℘n)δβ]‖ðψn − ψn‖2

≤ (‖ψn − ϑ‖2 − ‖ψn+1 − ϑ‖2) + ℘nO(1) + (1− µn)O(1). (3.27)

In view of the fact that the sequence {‖ψn−ϑ‖}∞n=1 is monotone, we consider
the following two cases:
Case 1: {‖ψn − ϑ‖}∞n=1 is monotonically non-increasing.

In fact, since {‖ψn−ϑ‖}∞n=1 is monotonically non-increasing, lim
n→∞

‖ψn−ϑ‖

exists. Using the fact that lim
n→∞

℘n = 0 and
∞∑
n=1

(1− µn) <∞, we obtain from
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(3.27) that

0 ≤ lim sup
n→∞

[(1− ℘n)δβ[1− (1− ℘n)δβ]‖ðψn − ψn‖2]

≤ lim sup
n→∞

(‖ψn − ϑ‖2 − ‖ψn+1 − ϑ‖2 + ℘nO(1) + (1− µn)O(1))

= 0. (3.28)

Hence,

lim sup
n→∞

‖ðψn − ψn‖ = 0 (3.29)

and

lim
n→∞

‖ψn − ðδβψn‖ = δβ lim
n→∞

‖ψn − ðψn‖ = 0. (3.30)

It therefore follows from Lemma 3.17 that

lim sup
n→∞

〈u− ϑ, ψn − ϑ〉 ≤ 0. (3.31)

Finally, we show that {ψn}∞n=1 converges strongly to ϑ. Now, from (3.24) and
Lemma 2.1, we get

‖ψn+1 − ϑ‖2 = ‖℘n(u− ϑ) + (1− ℘n)(ðδβψn − ϑ) + (1− µn)Qn‖2

≤ ‖℘n(u− ϑ) + (1− ℘n)(ðδβψn − ϑ)‖2 + 2(1− µn)〈Qn, ψn+1〉
≤ ℘2

n‖u− ϑ‖2 + (1− ℘n)2‖ðδβψn − ϑ‖2ðδβψn − ϑ〉
+ 2℘n(1− ℘n)〈u− ϑ,+(1− µn)O(1). (3.32)

Since ð is σ-enriched nonexpansive, it follows from

‖ðδβψn − ϑ‖ = ‖(1− δ)(ψn − ϑ) + δ(ðβψn − ϑ)‖
≤ (1− δ)‖ψn − ϑ‖+ δ‖(1− β)ψn + βðψn − ϑ‖

= (1− δ)‖ψn − ϑ‖+
δ

σ + 1
‖σ(ψn − ϑ) + ðψn − ðϑ‖

≤ (1− δ)‖ψn − ϑ‖+
δ

σ + 1
[(σ + 1)‖ψn − ϑ‖]

= ‖ψn − ϑ‖,

ðδβψn − ϑ = (1− δ)ψn + δðβψn − ϑ
= (1− δ)ψn + δ[(1− β)ψn + βðψn]− ϑ
= ψn − ϑ+ δβ(ðψn − ψn)

= ψn − ϑ+
δ

σ + 1
(ðψn − ψn)

and (3.32) that
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‖ψn+1 − ϑ‖2 ≤ (1− ℘n)2‖ψn − ϑ‖2 + ℘2
nO(1)

+ 2℘n(1−℘n)〈u−ϑ, ψn−ϑ+
δ

σ + 1
(ðψn−ψn)〉+ (1−µn)O(1)

≤ (1−℘n)2‖ψn − ϑ‖2 + ℘2
nO(1) + 2℘n(1− ℘n)〈u− ϑ, ψn − ϑ〉

+
2℘n(1− ℘n)δ

σ + 1
〈u− ϑ, ðψn − ψn〉+ (1− µn)O(1)

≤ (1− ℘n)2‖ψn − ϑ‖2 + ℘2
nO(1) + 2℘n(1− ℘n)〈u− ϑ, ψn − ϑ〉

+ ℘nO(1)‖ðψn − ψn‖+ (1− µn)O(1). (3.33)

If we set ξn = ℘n)O(1)+)O(1)‖ðψn − ψn‖+ 2℘n(1− ℘n))〈u− ϑ, ψn − ϑ〉 and
ϕn = (1− µn))O(1), then we obtain from (3.33) that

‖ψn+1 − ϑ‖2 ≤ (1− ℘n)2‖ψn − ϑ‖2 + ℘nξn + ϕn. (3.34)

Thus, from assumptions
∞∑
n=1

(1− µn) <∞ and
∞∑
n=1

µn <∞, and from the fact

that lim sup
n→∞

〈ϑ− ϑ, ψn − ϑ〉 ≥ 0, we obtain Lemma 2.6.

Case 2: We can find a subsequence {ψnk
}∞k=1 such that

‖ψnk
− ϑ‖ < ‖ψnk+1 − ϑ‖, ∀k ∈ N. (3.35)

Then, by Lemma 2.7, we can find a sequence {τ(n)}∞n=1 that satisfies the
following requirements:
Requirement (Z)

(i) {τ(n)}∞n=1 is s nondecreasing;;
(ii) lim

n→∞
τ(n) =∞;

(iii) ‖ψτ(n) − ϑ‖ < ‖ψτ(n+1) − ϑ‖, ∀n ≥ n0;
(iv) ‖ψn − ϑ‖ < ‖ψτ(n+1) − ϑ‖, ∀n ≥ n0.

As a consequence, and following the σ-enriched nonexpansivity of ð, we have

0 ≤ lim inf
n→∞

(‖ψτ (n+ 1)− ϑ‖ − ‖ψτ(n) − ϑ‖)

≤ lim sup
n→∞

(‖ψτ(n+1) − ϑ‖ − ‖ψτ(n) − ϑ‖)

= lim sup
n→∞

[‖℘τ(n)(u− ðδβψτ(n)) + ðδβψτ(n) − ϑ+ (1− µτ(n))Qτ(n)‖

− ‖ψτ(n) − ϑ‖]
≤ lim sup

n→∞
[℘τ(n)‖u− ðδβψτ(n)‖+ ‖ðδβψτ(n) − ϑ‖+ (1− µτ(n))‖Qτ(n)‖

− ‖ψτ(n) − ϑ‖]
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≤ lim sup
n→∞

[℘τ(n)‖u− ðδβψτ(n)‖+ (1− δ)‖ψτ(n) − ϑ‖

+
δ

σ + 1
‖σ(ψτ(n) − ϑ) + ðψτ(n) − ðϑ‖

+ (1− µτ(n))‖Qτ(n)‖ − ‖ψτ(n) − ϑ‖]
≤ lim sup

n→∞
[℘τ(n)‖u− ðδβψτ(n)‖+ ‖ψτ(n) − ϑ‖+ (1− µτ(n))‖Qτ(n)‖

− ‖ψτ(n) − ϑ‖] = 0, (3.36)

so that

lim
n→∞

(‖ψτ(n+1) − ϑ‖ − ‖ψτ(n) − ϑ‖) = 0. (3.37)

Since from (3.27),

0 ≤ (1− ℘τ(n))δβ[1− (1− ℘τ(n))δβ]‖ðψτ(n) − ψτ(n)‖2

≤ (‖ψτ(n) − ϑ‖2 − ‖ψτ(n)+1 − ϑ‖2)

+ ℘τ(n)O(1) + (1− µτ(n))O(1),

it follows from (3.37),
∞∑
n=1

(1− µτ(n)) <∞ and lim
n→∞

℘τ(n) = 0 that

lim
n→∞

‖ðψτ(n) − ψτ(n)‖ = 0. (3.38)

By Lemma 3.17, we get

lim sup
n→∞

〈u− ϑ, ψτ(n) − ϑ〉 = 0. (3.39)

Finally, we prove that {ψn}∞n=1 converges strongly to ϑ. Following the same
approach as in Case 1, we obtain

lim
n→∞

‖ψτ(n) − ϑ‖ = 0

and from Requirement Z(iv) and (3.37), we reach the conclusion that

lim
n→∞

‖ψn − ϑ‖ = 0. (3.40)

(2) Now, we rewrite (3.23) in the form

ψn+1 = ℘nu+ (1− ℘n)=δβψn + µnQn, (3.41)

where Qn = (1 − ℘n)(ðδβψn − =δβψn) is bounded, that is, ‖Qn‖ ≤ O(1).
Firstly, we show that lim

n→∞
‖ψn −=δβψn‖ = 0.

Let ϑ ∈ F (ð) = F (ðβ) = F (ðδβ) be the unique solution in F (=) of the
variational inequality

〈u− ϑ, ψ − ϑ〉 ≤ 0. (3.42)

Then, we get from (3.41) that
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‖ψn+1 − ϑ‖2 = ‖℘nu+ (1− ℘n)=δβψn + µnQn − ϑ‖2

= ‖[(1− ℘n)(=δβψn − ψn) + ψn − ϑ] + [℘n(u− ψn) + µnQn]‖2

From the last identity (together with Lemma 2.1), we obtain

‖ψn+1 − ϑ‖2 ≤ ‖(1− ℘n)δβ(=ψn − ψn) + ψn − ϑ‖2

+ 2〈℘n(u− ψn) + µnQn, ψn+1 − ϑ〉
≤ ‖(1− ℘n)δβ(=ψn − ψn) + ψn − ϑ‖2

+ 2℘n〈(u− ψn), ψn+1 − ϑ〉+ 2µn〈Qn, ψn+1 − ϑ〉
≤ (1− ℘n)2δ2β2‖=ψn − ψn‖2 + ‖ψn − ϑ‖2

− 2(1− ℘n)δβ〈ψn − ϑ, ψn −=ψn〉+ ℘nO(1) + µnO(1).
(3.43)

Since ϑ ∈ F (ð) = F (ðβ) implies that

ϑ = =ϑ = =βϑ,

which further implies that

0 = (σ + 1)ϑ− (σ + =)ϑ,

it follows from (3.43) and lemma 3.8 that

‖ψn+1 − ϑ‖2

≤ (1− ℘n)2δ2β2‖=ψn − ψn‖2 + ‖ψn − ϑ‖2 −
2(1− ℘n)δβ(σ + 1)

σ + 1
× 〈ψn − ϑ, (σ + 1)ψn − (σ + =)ψn − [(σ + 1)ϑ− (σ + =)ϑ]〉
+ ℘nO(1) + µnO(1)

≤ (1− ℘n)2δ2β2‖=ψn − ψn‖2 + ‖ψn − ϑ‖2 −
2(1− ℘n)δβ

σ + 1

×

{
‖(σ + 1)ψn − (σ + =)ψn − [(σ + 1)ϑ− (σ + =)ϑ]‖2

− 1

2
[‖(σ + 1)ψn − (σ + =)ψn‖2‖(σ + 1)ϑ− (σ + =)ϑ‖2]

}
+ ℘nO(1) + µnO(1)
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= ‖ψn − ϑ‖2 + (1− ℘n)2δ2β2‖=ψn − ψn‖2

− (1− ℘n)δβ

σ + 1
‖ψn −=ψn‖2 + ℘nO(1) + µnO(1)

= ‖ψn − ϑ‖2 −
(1− ℘n)δβ

σ + 1
[1− (1− ℘n)δβ(σ + 1)]‖ψn −=ψn‖2

+ ℘nO(1) + µnO(1). (3.44)

Hence,

0 ≤ (1− ℘n)δβ

σ + 1
[1− (1− ℘n)δβ(σ + 1)]‖ψn −=ψn‖2

≤ (‖ψn − ϑ‖2 − ‖ψn+1 − ϑ‖2) + ℘nO(1) + (1− µn)O(1). (3.45)

Again, we consider the monotony of the sequence {‖ψn − ϑ‖}∞n=1 in the fol-
lowing two cases:

Case 1: {‖ψn−ϑ‖}∞n=1 is monotonically non-increasing. Since {‖ψn−ϑ‖}∞n=1

is monotonically non-increasing, lim
n→∞

‖ψn − ϑ‖ exists. Using the fact that

lim
n→∞

℘n = 0 and
∞∑
n=1

(1− µn) <∞, we obtain from (3.27) that

0 ≤ lim sup
n→∞

[
(1− ℘n)δβ

σ + 1
[1− (1− ℘n)δβ(σ + 1)]‖ψn −=ψn‖2

]
≤ lim sup

n→∞
(‖ψn − ϑ‖2 − ‖ψn+1 − ϑ‖2 + ℘nO(1) + (1− µn)O(1)) = 0

and as a consequence

lim sup
n→∞

‖ψn −=ψn‖ = 0 (3.46)

and

lim
n→∞

‖ψn −=δβψn‖ = δβ lim
n→∞

‖ψn −=ψn‖ = 0. (3.47)

It therefore follows from Lemma 3.17 that

lim sup
n→∞

〈u− ϑ, ψn − ϑ〉 ≤ 0. (3.48)

Finally, we show that {ψn}∞n=1 converges strongly to ϑ. Now, from (3.41)
and Lemma 2.1, we get
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‖ψn+1 − ϑ‖2 = ‖℘n(u− ϑ) + (1− ℘n)(=δβψn − ϑ) + µnQn‖2

≤ ‖℘n(u− ϑ) + (1− ℘n)(=δβψn − ϑ)‖2 + 2µn〈Qn, ψn+1〉
≤ ℘2

n‖u− ϑ‖2 + (1− ℘n)2‖=δβψn − ϑ‖2

+ 2℘n(1− ℘n)〈u− ϑ,=δβψn − ϑ〉+ µnO(1)

≤ ℘2
n‖u− ϑ‖2 + (1− ℘n)2‖=δβψn − ϑ‖2=δβψn − ψn〉+

+ 2℘n〈u− ϑ,=δβψn − ψn〉+ 2℘n〈u− ϑ, ψn − ϑ〉+ µnO(1)

≤ (1− ℘n)‖ψn − ϑ‖2 + ℘2
nO(1) + ℘nO(1)‖=ψn − ψn‖

+ 2℘n(1− ℘n)〈u− ϑ, ψn − ϑ〉+ µnO(1) (3.49)

Set ξn = ℘nO(1)+)O(1)‖=ψn − ψn‖+ 2℘n(1− ℘n))〈u− ϑ, ψn − ϑ〉 and ϕn =
µnO(1), then (3.49) becomes

‖ψn+1 − ϑ‖2 ≤ (1− ℘n)‖ψn − ϑ‖2 + ℘nξn + ϕn. (3.50)

Thus, from assumptions
∞∑
n=1

µn < ∞ and
∞∑
n=1

℘n = ∞, and from the fact that

lim sup
n→∞

〈ϑ−ϑ, ψn−ϑ〉 ≥ 0, we can employ Lemma 2.6 and obtain the required

result.

Case 2: We can find a subsequence {ψnk
}∞k=1 such that

‖ψnk
− ϑ‖ < ‖ψnk+1 − ϑ‖, ∀k ∈ N. (3.51)

Then, by Lemma 2.7, we can find a sequence {τ(n)}∞n=1 that satisfies the
following requirements:
Requirement (Z)

(i) {τ(n)}∞n=1 is s nondecreasing;
(ii) lim

n→∞
τ(n) =∞;

(iii) ‖ψτ(n) − ϑ‖ < ‖ψτ(n+1) − ϑ‖, ∀n ≥ n0;
(iv) ‖ψn − ϑ‖ < ‖ψτ(n+1) − ϑ‖, ∀n ≥ n0.

Consequently,

0 ≤ lim inf
n→∞

(‖ψτ (n+ 1)− ϑ‖ − ‖ψτ(n) − ϑ‖)

≤ lim sup
n→∞

(‖ψτ(n+1) − ϑ‖ − ‖ψτ(n) − ϑ‖)

≤ lim sup
n→∞

(‖ψn+1 − ϑ‖ − ‖ψn − ϑ‖)

= lim sup
n→∞

[‖℘n(u−=δβψn) + =δβψn − ϑ+ µnQn‖ − ‖ψn − ϑ‖]

≤ lim sup
n→∞

[℘n‖u−=δβψn‖+ ‖=δβψn − ϑ‖+ µn‖Qn‖ − ‖ψn − ϑ‖]

≤ lim sup
n→∞

[℘nO(1) + ‖ψn − ϑ‖+ µn‖Qn‖ − ‖ψn − ϑ‖] = 0.
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Therefore,

lim
n→∞

(‖ψτ(n+1) − ϑ‖ − ‖ψτ(n) − ϑ‖) = 0. (3.52)

Since from (3.45),

0 ≤
(1− ℘τ(n))δβ

σ + 1
[1− (1− ℘τ(n))δβ]‖ψτ(n) −=ψτ(n)‖2

≤ (‖ψτ(n) − ϑ‖2 − ‖ψτ(n)+1 − ϑ‖2) + ℘τ(n)O(1) + µτ(n)O(1),

it follows from (3.52),
∞∑
n=1

µτ(n) <∞ and lim
n→∞

℘τ(n) = 0 that

lim
n→∞

‖ψτ(n) −=ψτ(n)‖ = 0. (3.53)

By Lemma 3.17, we get

lim sup
n→∞

〈u− ϑ, ψτ(n) − ϑ〉 = 0. (3.54)

Finally, we prove that {ψn}∞n=1 converges strongly to ϑ.
Following the same approach as in Case 1, we obtain

lim
n→∞

‖ψτ(n) − ϑ‖ = 0

and from Requirement Z(iv) and (3.53), we conclude that

lim
n→∞

‖ψn − ϑ‖ = 0. (3.55)

(3) Set Zn = µnðδβψn + (1− µn)=δβψn so that (3.23) becomes

ψn+1 = ℘nu+ (1− ℘n)Zn. (3.56)

Firstly, we prove that lim
n→∞

‖ψn − Zn‖ = 0.

Let ϑ0 ∈ F (ð) ∩ F (=) be the unique solution of the variational inequality

〈u− ϑ0, ψ − ϑ0〉 ≤ 0 (3.57)
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for all ψ ∈ F (ð) ∩ F (=). Then, we estimate as follows:

‖Znψn − ϑ0‖2

= ‖µn(ðδβψn − ϑ0) + (1− µn)(=δβψn − ϑ0)‖2

= µn‖ðδβψn − ϑ0‖2 + (1− µn)‖=δβψn − ϑ0‖2

− µn(1− µn)‖ðδβψn −=δβ‖2

≤ µn‖ψn − ϑ0‖2 + (1− µn)

[
‖ψn − ϑ0‖2 −

2(σ + 1)

σ
‖ψn −=δβψn‖2

]
− µn(1− µn)‖ðδβψn −=δβ‖2 (by (??))

= ‖ψn − ϑ0‖2 −
2(1− µn)(σ + 1)

σ
‖ψn −=δβψn‖2

− µn(1− µn)‖ðδβψn −=δβ‖2. (3.58)

But,

‖ψn+1 − ϑ0‖2 = ‖Znψn − ϑ0 + ℘n(u− Znψn)‖2

= ‖Znψn − ϑ0‖2 + ℘n[℘n‖u− Znψn‖2

+ 2‖Znψn − ϑ0‖‖u− Znψn‖]
= ‖Znψn − ϑ0‖2 + ℘nO(1)

≤ ‖ψn − ϑ0‖2 −
2(1− µn)(σ + 1)

σ
‖ψn −=δβψn‖2

− µn(1− µn)‖ðδβψn −=δβ‖2 + ℘nO(1).

The last inequality implies that

2(1− µn)(σ + 1)

σ
‖ψn−=δβψn‖2 ≤ ‖ψn−ϑ0‖2−‖ψn+1−ϑ0‖2+℘nO(1) (3.59)

and

µn(1−µn)‖ðδβψn−=δβψn‖2 ≤ ‖ψn− ϑ0‖2−‖ψn+1− ϑ0‖2 +℘nO(1). (3.60)

Now, we consider the following cases.

Case 1: Since {‖ψn − ϑ0‖}∞n=1 is monotone non-increasing, lim
n→∞

‖ψn − ϑ0‖
exists. Also, since lim

n→∞
℘n = 0 and lim inf

n→∞
µn(1−µn) > 0, it follows from (3.59)

that

lim
n→∞

‖ψn −=δβψn‖ = lim
n→∞

‖ψn −=ψn‖ = 0. (3.61)

Moreover, from (3.60), we obtain

lim
n→∞

‖ðδ,βψn −=δβψn‖ = lim
n→∞

‖ðψn −=ψn‖ = 0. (3.62)
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Since
‖ψn − ðψn‖ ≤ ‖ψn −=ψn‖+ ‖=ψn − ðψn‖,

it follows from (3.61) and (3.62) that

lim
n→∞

‖ψn − ðψn‖ = 0 (3.63)

and

lim
n→∞

‖ψn − ðδβψn‖ = δ lim
n→∞

‖ψn − ðβψn‖

= δβ lim
n→∞

‖ψn − ðψn‖

= 0. (3.64)

Now, since

‖Znψn − ψn‖ ≤ µn‖ðδβψn − ψn‖+ (1− µn)‖=δβψn − ψn‖,
it follows from (3.61) and (3.64) that

lim
n→∞

‖ψn − Znψn‖ = 0. (3.65)

Finally, we show that {ψn}∞n=1 converges strongly to ϑ0. For this, using
the quasi-nonexpansivity property of Zn, we estimate as follows. Now, from
(3.56) and Lemma 2.1, we get

‖ψn+1 − ϑ0‖2 = ‖(1− ℘n)(Znψn − ϑ0) + ℘n(u− ϑ0)‖2

≤ (1− ℘n)2‖Znψn − ϑ0‖2 + ℘2
n‖u− ϑ0‖2

+ 2℘n(1− ℘n)〈Znψn − ϑ0, u− ϑ0〉
≤ (1− ℘n)2‖Znψn − ϑ0‖2 + ℘2

n‖u− ϑ0‖2

+ 2℘n(1− ℘n)〈Znψn − ψn, u− ϑ0〉
+ 2℘n(1− ℘n)〈ψn − ϑ, u− ϑ0〉
≤ (1− ℘n)‖ψn − ϑ0‖2 + ℘2

nO(1) + ℘nO(1)‖Znψn − ψn‖
+ 2℘n(1− ℘n)〈ψn − ϑ0, u− ϑ0〉. (3.66)

Set ξn = ℘nO(1)+)O(1)‖Znψn−ψn‖+ 2(1−℘n))〈u− ϑ, ψn− ϑ〉 and ϕn =
µnO(1), then (3.66) becomes

‖ψn+1 − ϑ‖2 ≤ (1− ℘n)‖ψn − ϑ‖2 + ℘nξn + ϕn. (3.67)

Thus, from assumptions
∞∑
n=1

µn < ∞ and
∞∑
n=1

℘n = ∞, and from the fact that

lim sup
n→∞

〈ϑ−ϑ, ψn−ϑ〉 ≥ 0, we can employ Lemma 2.6 and obtain the required

result.

Case 2: There exists a subsequence {ψnk
}∞k=1 for which

‖ψnk
− ϑ‖ < ‖ψnk+1 − ϑ‖, ∀k ∈ N.
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Then, by Lemma 2.7, we can find a sequence {τ(n)}∞n=1 that satisfies the
following requirements:
Requirement (Z)

(i) {τ(n)}∞n=1 is s nondecreasing;
(ii) lim

n→∞
τ(n) =∞;

(iii) ‖ψτ(n) − ϑ0‖ < ‖ψτ(n+1) − ϑ0‖, ∀n ≥ n0;
(iv) ‖ψn − ϑ0‖ < ‖ψτ(n+1) − ϑ0‖, ∀n ≥ n0.

Consequently,

0 ≤ lim inf
n→∞

(‖ψτ(n+1) − ϑ0‖ − ‖ψτ(n) − ϑ0‖)

≤ lim sup
n→∞

(‖ψτ(n+1) − ϑ0‖ − ‖ψτ(n) − ϑ0‖)

≤ lim sup
n→∞

(‖ψn+1 − ϑ0‖ − ‖ψn − ϑ0‖)

= lim sup
n→∞

[‖℘n(u− ϑ0) + (1− ℘n)(Znψn − ϑ0)‖ − ‖ψn − ϑ‖]

≤ lim sup
n→∞

[℘n‖u− ϑ0‖+ (1− ℘n)‖Znψn − ϑ0‖ − ‖ψn − ϑ‖]

≤ lim sup
n→∞

[℘n‖u− ϑ0‖+ (1− ℘n)‖ψn − ϑ0‖ − ‖ψn − ϑ‖]

≤ lim sup
n→∞

[℘nO(1) + ‖ψn − ϑ‖ − ‖ψn − ϑ‖] = 0.

Therefore,

lim
n→∞

(‖ψτ(n+1) − ϑ‖ − ‖ψτ(n) − ϑ‖) = 0. (3.68)

By (3.59),

0 ≤
(1− ℘τ(n))δβ

σ + 1
[1− (1− ℘τ(n))δβ]‖ψτ(n) −=ψτ(n)‖2

≤ (‖ψτ(n) − ϑ‖2 − ‖ψτ(n)+1 − ϑ‖2) + ℘τ(n)O(1) + µτ(n)O(1)

and by (3.60), we have

µτ(n)(1− µτ(n))‖ðδβψτ(n) −=δβψτ(n)‖2 ≤ ‖ψτ(n) − ϑ0‖2 − ‖ψτ(n)+1 − ϑ0‖2

+ ℘τ(n)O(1).

Using the same argument as in Case 1, we obtain that

lim
n→∞

‖ψτ(n) −=ψτ(n)‖ = 0, (3.69)

lim
n→∞

‖ψτ(n) − ðψτ(n)‖ = 0 (3.70)

and

lim
n→∞

‖ψτ(n) − Zτnψτ(n)‖ = 0. (3.71)
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Thus, by Lemma 3.17, (3.69), (3.70) and (3.71), we get

lim sup
n→∞

〈u− ϑ, ψτ(n) − ϑ〉 = 0. (3.72)

Finally, we prove that {ψn}∞n=1 converges strongly to ϑ.

Using (3.71), the assumption that
∞∑
n=1

℘n = ∞, (3.72) and following the

same approach as in Case 1, we obtain

lim
n→∞

‖ψτ(n) − ϑ‖ = 0.

From Requirement Z(iv) and (3.72), we conclude that

lim
n→∞

‖ψn − ϑ‖ = 0.

�

Remark 3.20. (1) The main result of this paper provides an affirmative
answer to the question of Kurokawa and Takahashi; see Remark of
page 1567 in [13].

(2) Note that [14, Theorem 4.1] is a weak convergence result and that
our Theorem 3.19 is a strong convergence result. However, it worths
mentioning that the method of proving Theorem 3.19 is very different
from the one employed in proving Theorem 4.1.

(3) In most cases, strong convergence is more desirable than weak conver-
gence.

4. Applications

In this section, we present some applications of Theorem 3.19 for the Ky
Fan minimax inequality and other related Problems.

We know that Ky Fan minimax inequality problem is to search for ψ ∈ C
that guarantees

(EP ) g(ψ, φ) ≥ 0 for each φ ∈ C,

where g : C × C −→ R is a bifunction. This problem includes the following
problems as special cases: optimization problems, Nash equilibrium problems,
variational inequality problems, fixed point problems, minimax inequalities,
and saddle point problems (see, for instance, [4] and other related literature
for more detail). The solution of Ky Fan minimax inequality problem (EP, for
short) is represented with EP (C, g).
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To solve the Ky Fan minimax inequality problem, the following assumptions
are imposed on g.

Assumption:

(A1) g(ψ,ψ) ≥ 0 for each ψ ∈ C;
(A2) g is monotone, that is, g(ψ, φ) + g(φ, ψ) ≤ 0 for any ψ, φ ∈ C;
(A3) for each ψ, φ, z ∈ C, lim sup

t→∞
g(tψ + (1− t)φ, z) ≤ g(ψ, .);

(A4) for each ψ ∈ C, the scalar function φ → g(ψ, φ) is convex and lower
semicontinuous.

Theorem 4.1. Let H be a real Hilbert space, ∅ 6= C ⊂ H be closed and convex
and G : C × C −→ R be a function satisfying Assumption. Let = : C −→ C be
an σ-enriched nonspreading mapping and let

TGr ψ =

{
φ ∈ C : G(φ, e) +

1

r
〈e− φ, φ− ψ〉 ≥ 0, ∀y ∈ C

}
for all ψ ∈ H. Let β, δ ∈ (0, 1), =δβ be an averaged type mappings, where
=δβ = (1 − δ)I + δ=β and =β = (1 − β)I + β=. Suppose that Γ = Fix(=) ∩
EP (C, G) 6= ∅. Let {℘n}∞n=1 be a real sequence in (0, 1) satisfying

(1) lim
n→∞

℘n = 0,

(2)
∞∑
n=1

℘n =∞.

Let ψ0 ∈ C [0, 1] and define {ψn}∞n=1 by

ψn+1 = ℘nψ0 + (1− ℘n)=δβ(TGr ψn). (4.1)

Then, lim
n→∞

PΓψ0 exist and convergent to a point in Γ.

Theorem 4.2. Let H be a real Hilbert space, ∅ 6= C ⊂ H be closed and convex
and G : C × C −→ R be a function satisfying Assumption. Let = : C −→ C
be an σ-enriched nonspreading mapping. Let β, δ ∈ (0, 1), =δβ be an averaged
type mappings, where =δβ = (1− δ)I + δ=β and =β = (1−β)I +β=. Suppose
that Γ = Fix(=) 6= ∅. Let {℘n}∞n=1 be a real sequence in (0, 1) satisfying

(1) lim
n→∞

℘n = 0,

(2)
∞∑
n=1

℘n =∞.

Let ψ0 ∈ C [0, 1] and define {ψn}∞n=1 by

ψn+1 = ℘nψ0 + (1− ℘n)=δβψn. (4.2)

Then, lim
n→∞

PΓψ0 exist and convergent to a point in Γ.
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Another worthy application of Theorem 3.19 is in the study of split fea-
sibility problem (shortly, SFP). In [7], Censor and Elfving commenced an
investigation on SFP for modeling inverse problems that emanates from medi-
cal image reconstruction. Since then, SFP has found numerous applications in
such fields as bimedical engineering, control theory, geophysics, approximation
theory, image processing, communications, etc; see [6], [17] for more details.
The SFP is presented as follows:

Search for ℘? ∈ C whic guarantees that ~? = =℘? ∈ Q, (4.3)

where ∅ 6= C,Q are closed and convex subsets of real Hilbert spaces H1 and
H2, respectively, and = : H1 −→ H2 is a bounded linear operator.

Theorem 4.3. Let = : H1 −→ H1 be an σ-enriched nonspreading mapping
with F (=) 6= ∅. and ð : H2 −→ H2 be σ-enriched nonspreading mapping
with F (ð) 6= ∅. A : H1 −→ H2 be a bounded linear operator with ‖A‖ > 0.
Suppose that Γ = {ψ ∈ Fix(=),Aψ ∈ Fix(ð)} 6= ∅. Let δ, β ∈ (0, 1) and

V = I1 −
1

‖A‖2
A?(I2 − ðδβ)A, where I1 and I2 are identity mappings on

H1 and H2, respectively. Let =δβ and ðδβ be averaged type mappings, where
=δβ = (1 − δ)I1 + δ=β, ðδβ = (1 − δ)I2 + δðβ, =β = (1 − β)I1 + β= and
ðβ = (1 − β)I2 + βðβ. Suppose that {℘n}∞n=1 is a real sequence in (0, 1)
satisfying

(1) lim
n→∞

℘n = 0,

(2)
∞∑
n=1

℘n =∞.

Let ψ0 ∈ C and define the sequence {ψn}∞n=1 by

ψn+1 = ℘nψ0 + (1− ℘n)=δβV ψn. (4.4)

Then, lim
n→∞

PΓψ0 exist and convergent to a point in Γ.
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