DOI QR코드

DOI QR Code

Bending analysis of nano-Fe2O3 reinforced concrete slabs exposed to temperature fields and supported by viscoelastic foundation

  • Zouaoui R. Harrat (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Mohammed Chatbi (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Baghdad Krour (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Sofiane Amziane (Clermont Auvergne University, CNRS) ;
  • Mohamed Bachir Bouiadjra (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Marijana Hadzima-Nyarko (Department of Civil Engineering, Josip Juraj Strossmayer University of Osijek) ;
  • Dorin Radu (Faculty of Civil Engineering, Transilvania University of Brasov) ;
  • Ercan Isik (Department of Civil Engineering, Bitlis Eren University)
  • 투고 : 2023.02.12
  • 심사 : 2024.07.15
  • 발행 : 2024.02.25

초록

During the clinkering stages of cement production, the chemical composition of fine raw materials such as limestone and clay, which include iron oxide (Fe2O3), silicon dioxide (SiO2) and aluminum oxide (Al2O3), significantly influences the quality of the final product. Specifically, the chemical interaction of Fe2O3 with CaO, SiO2 and Al2O3 during clinkerisation plays a key role in determining the chemical reactivity and overall quality of the final cement, shaping the properties of the concrete produced. As an extension, this study aims to investigate the physical effects of incorporating nanosized Fe2O3 particles as fillers in concrete matrices, and their impact on concrete structures, namely slabs. To accurately model the reinforced concrete (RC) slabs, a refined trigonometric shear deformation theory (RTSDT) is used. Additionally, the stochastic Eshelby's homogenization approach is employed to determine the thermoelastic properties of nano-Fe2O3 infused concrete slabs. To ensure comprehensive coverage in the study, the RC slabs undergo various mechanical loads and are exposed to temperature fields to assess their thermo-mechanical performance. Furthermore, the slabs are assumed to rest on a three-parameter viscoelastic foundation, comprising the Winkler elastic springs, Pasternak shear layer and a damping parameter. The equilibrium governing equations of the system are derived using the principle of virtual work and subsequently solved using Navier's technique. The findings indicate that while ferric oxide nanoparticles enhance the mechanical properties of concrete against mechanical loading, they have less favorable effects on its performance against thermal exposure. However, the viscoelastic foundation contributes to mitigating these effects, improving the concrete's overall performance in both scenarios. These results highlight the trade-offs between mechanical and thermal performance when using Fe2O3 nanoparticles in concrete and underscore the importance of optimizing nanoparticle content and loading conditions to improve the structural performance of concrete structures.

키워드

참고문헌

  1. Al Biajawi, M.I., Abdulrahman, M.F., Saod, W.M., Hilal, N., Embong, R. and Sor, N.H. (2023), "Investigation the effect of nanocarbon tube prepared from tea waste on microstructure and properties of cement mortar", Environ. Sci. Pollut. Res., 1-14. https://doi.org/10.1007/s11356-023-31606-1
  2. Al-Hadithi, A.I., Hilal, N.N., Al-Gburi, M. and Midher, A.H. (2023), "Structural behavior of reinforced lightweight self-compacting concrete beams using expanded polystyrene as coarse aggregate and containing polyethylene terephthalate fibers", Struct. Concrete, 24(5), 5808-5826. https://doi.org/10.1002/suco.202200381
  3. Alani, N.Y., Al-Jumaily, I.A. and Hilal, N. (2023), "Performance of self-compacting concrete containing nano clay at elevated temperatures and MgSO4 attack", Eur. J. Environ. Civil Eng., 27(10), 3001-3019. https://doi.org/10.1080/19648189.2022.2121766
  4. Alazwari, M.A. and Zenkour, A.M. (2022), "A quasi-3D refined theory for the vibration of functionally graded plates resting on Visco-Winkler-Pasternak foundations", Mathematics, 10(5), 716. https://doi.org/10.3390/math10050716
  5. Arefi, M.R. and Rezaei-Zarchi, S. (2012), "Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites", Int. J. Molecul. Sci., 13(4), 4340-4350. https://doi.org/10.3390/ijms13044340
  6. Bartos, P. (2004), Nanotechnology in construction, (1st Edition), Royal Society of Chemistry.
  7. Beigi, M.H., Berenjian, J., Lotfi Omran, O., Sadeghi Nik, A. and Nikbin, I.M. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046
  8. Benfrid, A., Benbakhti, A., Harrat, Z.R., Chatbi, M., Krour, B. and Bouiadjra, M.B. (2023), "Thermomechanical analysis of glass powder based eco-concrete panels: Limitations and performance evaluation", Periodica Polytech. Civil Eng., 67(4), 1284-1297. https://doi.org/10.3311/PPci.22781
  9. Bunea, G., Alexa-Stratulat, S.-M., Mihai, P. and Toma, I.-O. (2023), "Use of clay and titanium dioxide nanoparticles in mortar and concrete-A state-of-the-art analysis", Coatings, 13(3), 506. https://doi.org/10.3390/coatings13030506
  10. Chatbi, M., Krour, B., Benatta, M.A., Harrat, Z.R., Amziane, S. and Bouiadjra, M.B. (2022), "Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation", Struct. Eng. Mech., Int. J., 84(5), 685-697. https://doi.org/10.12989/sem.2022.84.5.685
  11. Chatbi, M., Harrat, Z.R., Benatta, M.A., Krour, B., Hadzima-Nyarko, M., Isik, E., Czarnecki, S. and Bouiadjra, M.B. (2023), "Nano-Clay Platelet Integration for Enhanced Bending Performance of Concrete Beams Resting on Elastic Foundation: An Analytical Investigation", Materials, 16(14), 5040. https://doi.org/10.3390/ma16145040
  12. Clyne, T.W. and Withers, P.J. (1993), An Introduction to Metal Matrix Composites, Cambridge University Press.
  13. Dine Elhennani, S., Harrat, Z.R., Chatbi, M., Belbachir, A., Krour, B., Isik, E., Harirchian, E., Bouremana, M. and Bachir Bouiadjra, M. (2023), "Buckling and Free Vibration Analyses of Various Nanoparticle Reinforced Concrete Beams Resting on Multi-Parameter Elastic Foundations", Materials, 16(17), 5865. https://doi.org/10.3390/ma16175865
  14. Ericksen, J.L., Kinderlehrer, D., Kohn, R. and Lions, J.-L. (2012), Homogenization and Effective Moduli of Materials and Media, Springer Science & Business Media.
  15. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the royal society of London. Series A. Mathematical and physical Sciences, 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133
  16. Ghannam, S., Najm, H. and Vasconez, R. (2016), "Experimental study of concrete made with granite and iron powders as partial replacement of sand", Sustain. Mater. Technol., 9, 1-9. https://doi.org/10.1016/j.susmat.2016.06.001
  17. Hamzi, S., Mechab, I., Abbad, H. and Elmeiche, N. (2021), "Vibration analysis of viscoelastic fgm nanoscale plate resting on viscoelastic medium using higher-order theory", Periodica Polytech. Civil Eng., 65(1), 255-275. https://doi.org/10.3311/PPci.16010
  18. Harrat, Z.R., Amziane, S., Krour, B. and Bachir Bouiadjra, M. (2021), "On the static behavior of nano SiO2 based concrete beams resting on an elastic foundation", Comput. Concrete, Int. J., 27(6), 575-583. https://doi.org/10.12989/cac.2021.27.6.575
  19. Heidari, A. and Tavakoli, D. (2013), "A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiOv particles", Constr. Build. Mater., 38, 255-264. https://doi.org/10.1016/j.conbuildmat.2012.07.110
  20. Huseien, G.F., Khalid, N.H.A. and Mirza, J. (2022), Nanotechnology for Smart Concrete, (1st Edition), CRC Press.
  21. Kaikea, A., Achoura, D., Duplan, F. and Rizzuti, L. (2014), "Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete", Mater. Des., 63, 493-499. https://doi.org/10.1016/j.matdes.2014.06.066
  22. Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  23. Kecir, A., Chatbi, M., Harrat, Z.R., Bachir Bouiadjra, M., Bouremana, M. and Krour, B. (2024), "Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3): Non-local Bending Analysis", Periodica Polytech. Civil Eng., 68(3), 842-858. https://doi.org/10.3311/PPci.23016
  24. Khetib, M., Abbad, H., Elmeiche, N. and Mechab, I. (2019), "Effect of the Viscoelastic Foundations on the Free Vibration of Functionally Graded Plates", Int. J. Struct. Stabil. Dyn., 19(11), 1950136. https://doi.org/10.1142/s0219455419501360
  25. Kiasat, M., Zamani, H. and Aghdam, M. (2014), "On the transient response of viscoelastic beams and plates on viscoelastic medium", Int. J. Mech. Sci., 83, 133-145. https://doi.org/10.1016/j.ijmecsci.2014.03.007
  26. Lee, H.-S., Lee, J.-Y. and Yu, M.-Y. (2003), "Influence of iron oxide pigments on the properties of concrete interlocking blocks", Cement Concrete Res., 33(11), 1889-1896. https://doi.org/10.1016/S0008-8846(03)00209-6
  27. Mondal, P., Shah, S.P., Marks, L.D. and Gaitero, J.J. (2010), "Comparative study of the effects of microsilica and nanosilica in concrete", Transport. Res. Record, 2141(1), 6-9. https://doi.org/10.3141/2141-02
  28. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090
  29. Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F. and Khademno, A. (2010), "The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete", J. Am. Sci., 6(4), 90-93.
  30. Priyadarshana, T. and Dissanayake, R. (2000), "Chloride penetration and sulfate resistance of concrete incorporating nano-silica (nano-SiO2), micro-silica (micro-SiO2) and fly ash", environment, 206, 1. https://doi.org/10.15224/ 978-1-63248-096-5-14
  31. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  32. Reddy, J.N. (1990), "A general non-linear third-order theory of plates with moderate thickness", Int. J. Non-Linear Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
  33. Rong, Z., Sun, W., Xiao, H. and Jiang, G. (2015), "Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites", Cement Concrete Compos., 56, 25-31. https://doi.org/10.1016/j.cemconcomp.2014.11.001
  34. Silvestre, J., Silvestre, N. and De Brito, J. (2015), "Review on concrete nanotechnology", Eur. J. Environ. Civil Eng., 20(4), 455-485. https://doi.org/10.1080/19648189.2015.1042070
  35. Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2020), "Dynamic behavior of FGM viscoelastic plates resting on elastic foundations", Acta Mechanica, 231(1), 1-17. https://doi.org/10.1007/s00707-019-02502-y
  36. Thai, H.-T. and Choi, D.-H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  37. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  38. Whitney, J. (1973), "Shear correction factors for orthotropic laminates under static load". https://doi.org/10.1115/1.3422950
  39. Zamani, H., Aghdam, M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory", Compos. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101
  40. Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6