Acknowledgement
This research was supported by a grant from Wonkang University (2023). The authors are grateful to those sponsors for their financial support. The opinions expressed in this paper are those of the authors and do not necessarily reflect those of the sponsors.
References
- AFGC (2013), Betons Fibres a Ultra-Hautes Performances, Association Francaise du Genil Civil, Paris, France.
- Ahmad, A., Farooq, F., Niewiadomski, P., Ostrowski, K., Akbar, A., Aslam, F. and Alyousef, R. (2021), "Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm", Mater., 14(4), 794. https://doi.org/10.3390/ma14040794.
- Ahmadi-Nedushan, B. (2012), "An optimized instance based-learning algorithm for estimation of compressive strength of concrete", Eng. Appl. Artif. Intell., 25(5), 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012.
- Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: An extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.
- Anyaoham, U., Zaji, A. and Liu, Z. (2020), "Soft computing in estimating the compressive strength for high-performance concrete via concrete composition appraisal", Constr Build. Mater., 257, 119472. https://doi.org/10.1016/j.conbuildmat.2020.119472.
- ASTM C39/C39M (2016), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
- Badra, N., Haggag, S.Y.A., Deifalla, A. and Salem, N.M. (2022), "Development of machine learning models for reliable prediction of the punching shear strength of FRP-reinforced concrete slabs without shear reinforcements", Measure., 201, 111723. https://doi.org/10.1016/j.measurement.2022.111723.
- Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 2016, 7648467. https://doi.org/10.1155/2016/7648467.
- Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultrahigh-performance concrete", Compos. Part B Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.
- Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. https://doi.org/10.12989/cac.2020.26.5.451.
- De Rousseau, M.A., Laftchiev, E., Kasprzyk, J.R., Rajagopalan, B. and Srubar III, W.V. (2019), "A comparison of machine learning methods for predicting the compressive strength of field-placed concrete", Constr. Build. Mater., 228, 116661. https://doi.org/10.1016/j.conbuildmat.2019.08.042.
- Deifalla, A. and Salem, N.M. (2022) " A machine learning model for torsion strength of externally bonded FRP-reinforced concrete beams", Polym., 14(9), 1824. https://doi.org/10.3390/polym14091824.
- Farhat, F.A., Nicolaides, D., Kanellopoulos, A. and Karihaloo, B.L. (2007), "High performance fiber-reinforced cementitious composite (CARDIFRC) - performance and application to retrofitting", Eng. Fract. Mech., 74(1-2), 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023.
- Feng, D.C., Liu, Z.T., Wang, X.D., Chen, Y., Chang, J.Q., Wei, D.F. and Jiang, Z.M. (2020), "Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach", Constr. Build. Mater., 230, 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.
- Fuqua, D. and Razzaghi, T. (2020), "A cost-sensitive convolution neural network learning for control chart pattern recognition", Expert Syst. Appl., 150, 113275. https://doi.org/10.1016/j.eswa.2020.113275.
- Gao, J., Sun, W. and Morino, K. (1997), "Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete", Cement Concrete Compos., 19(4), 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1.
- Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concrete using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
- Graybeal, B.A. (2006), "Practical means for determination of the tensile behavior of ultra-high-performance concrete", J. ASTM Int., 3(8), 100387. https://doi.org/10.1520/JAI100387.
- Graybeal, B.A. and Baby, F. (2013), "Development of direct tension test method for ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 110(2), 177-186. https://doi.org/10.14359/51685532.
- Hassan, A.M.T., Jones, S.W. and Mahmud, G.H. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.
- Hoang, A.L. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.
- Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concrete containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/10.1016/j.conbuildmat.2020.118676.
- Kandiri, A., Shakor, P., Kurda, R. and Deifalla, A.F. (2022), "Modified artificial neural networks and support vector regression to predict lateral pressure exerted by fresh concrete on formwork", Int. J. Concr. Struct. Mater., 16(6), 917-938. https://doi.org/10.1186/s40069-022-00554-4.
- KCI (2012), Design Recommendations for Ultra-High Performance Concrete K-UHPC, Korea Concrete Institute, Seoul, Korea.
- Lee, S.H., Kim, S. and Yoo, D.Y. (2018), "Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultrahigh-performance concrete", Constr. Build. Mater., 185, 530-544. https://doi.org/10.1016/j.conbuildmat.2018.07.071.
- Li, Y., Zhang, Q., Kaminski, P., Deifalla, A.F., Sufian, M., Dyczko, A., Kahla, N.B. and Atig, M. (2022) "Compressive strength of steel fiber-reinforced concrete employing supervised machine learning techniques", Mater., 15(12), 4209. https://doi.org/10.3390/ma15124209.
- Meng, W. and Khayat, K.H. (2018), "Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC", J. Mater. Civil Eng., 30(4), 04018030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002212.
- Mohammed, A., Rafiq, S., Sihag, P., Kurda, R. and Mahmood, W. (2021), "Soft computing techniques: Systematic multiscale models to predict the compressive strength of HVFA concrete based on mix proportions and curing times", J. Build. Eng., 33, 101851. https://doi.org/10.1016/j.jobe.2020.101851.
- Moradi, M.J. and Hariri-Ardebili, M.A. (2019), "Developing a library of shear walls database and the neural network based predictive meta-model", Appl. Sci., 9(12), 2562. https://doi.org/10.3390/app9122562.
- Nguyen, H., Vu, T., Vo, T.P. and Thai, H.T. (2021), "Efficient machine learning models for prediction of concrete strengths", Constr. Build. Mater., 266, 120950. https://doi.org/10.1016/j.conbuildmat.2020.120950.
- Park, J.R., Lee, H.J., Yang, K.H., Kook, J.K. and Kim, S. (2021), "Study on influence of range of data in concrete compressive strength with respect to the accuracy of machine learning with linear regression", Appl. Sci., 11(9), 3886. https://doi.org/10.3390/app11093866.
- Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra-high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Pyo, S., Kim, H.K. and Lee, B.Y. (2017), "Effects of coarser fine aggregate on tensile properties of ultra high performance concrete", Cement Concrete Compos., 84, 28-35. https://doi.org/10.1016/j.cemconcomp.2017.08.014.
- Qiu, M., Zhang, Y., Qu, S., Zhu, Y. and Shao, X. (2020), "Effect of reinforcement ratio, fiber orientation, and fiber chemical treatment on the direct tension behavior of rebar-reinforced UHPC", Constr. Build. Mater., 256, 119311. https://doi.org/10.1016/j.conbuildmat.2020.119311.
- Rahdar, H.A. and Ghalehnovi, M. (2016), "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154. https://doi.org/10.12989/cac.2016.18.1.139.
- Roshani, M., Phan, G., Faraj, R.H., Phan, N.H., Roshani, G.H., Nazemi, B., Corniani, E. and Nazemi, E. (2021b), "Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum byproducts", Nucl. Eng. Technol., 53(4), 1277-1283. https://doi.org/10.1016/j.net.2020.09.015.
- Roshani, M., Phan, G., Roshani, G.H., Hanus, R., Nazemi, B., Corniani, E. and Nazemi, E. (2021a), "Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil-water three phase flows", Measure., 168, 108427. https://doi.org/10.1016/j.measurement.2020.108427.
- Roshani, M., Phan, G.T.T., Ali, P.J.M., Roshani, G.H., Hanus, R., Duong, T., Corniani, E., Nazemi, E. and Kalmoun, E.M. (2021c), "Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline's scale layer thickness", Alex. Eng. J., 60(1), 1955-1966. https://doi.org/10.1016/j.aej.2020.11.043.
- Salem, N.M. and Deifalla, A. (2022), "Evaluation of the strength of slab-column connections with FRPs using machine learning algorithms", Polym., 14(8), 1517. https://doi.org/10.3390/polym14081517.
- Shen, Z., Deifalla, A.F., Kaminski, P. and Dyczko A. (2022), "Compressive strength evaluation of ultra-high-strength concrete by machine learning", Mater., 15(10), 3523. https://doi.org/10.3390/ma15103523.
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
- Thomas, J. and Ramaswamy, A. (2007), "Mechanical properties of steel fiber-reinforced concrete", J. Mater. Civil Eng., 19(5), 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
- Visalvanich, K. and Naaman, A.E. (1983), "Fracture model for fiber reinforced concrete", ACI J. Proc., 80(2), 128-138. http://doi.org/10.14359/10712.
- Wafa, F.F. and Ashour, S.A. (1992), "Mechanical properties of high-strength fiber reinforced concrete", ACI Mater. J., 89(5), 449-455. https://doi.org/10.14359/2390.
- Wang, J.Y. and Guo, J.Y. (2018), "Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques", Cement Concrete Compos., 88, 17-28. https://doi.org/10.1016/j.cemconcomp.2018.01.007.
- Wang, Q., Hussain, A., Faroogi, M.U. and Deifalla, A.F. (2022), "Artificial intelligence-based estimation of ultra-high-strength concrete's flexural property", Case Stud. Constr. Mater., 17, e01243. https://doi.org/10.1016/j.cscm.2022.e01243.
- Wille, K., Kim, D.J. and Naaman, A.E. (2011), "Strain-hardening UHP-FRC with low fiber contents", Mater. Struct., 44, 583-598. https://doi.org/10.1617/s11527-010-9650-4.
- Wu, Y. and Zhou, Y. (2022a), "Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques", Environ. Sci. Pollut. Res., 89(59), 89198-89209. https://doi.org/10.1007/s11356-022-22048-2.
- Wu, Y. and Zhou, Y. (2022b), "Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete", Constr. Build. Mater., 330, 127298. https://doi.org/10.1016/j.conbuildmat.2022.127298.
- Zhang, Q., Feng, Y., Cheng, Z., Jiao, Y., Cheng, H., Wang, J. and Qi, J. (2022), "Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment", Comput. Concrete, 30(3), 175-183. https://doi.org/10.12989/cac.2022.30.3.175.