DOI QR코드

DOI QR Code

TECSolverApp: The equivalent seismic load solver in MATLAB App Designer and ASP.NET Core

  • Muhammet Dingil (Department of Civil Engineering, Iskenderun Technical University) ;
  • Yakup Turedi (Department of Civil Engineering, Iskenderun Technical University) ;
  • Murat Ornek (Department of Civil Engineering, Iskenderun Technical University)
  • Received : 2021.01.20
  • Accepted : 2024.02.26
  • Published : 2024.09.25

Abstract

TECSolverApp is an application that calculates the total equivalent seismic load (base shear) and shows the design spectra in accordance with the Turkish Earthquake Code (TEC). TECSolverApp software can present the spectral acceleration-period graph and the base shear (in terms of unit building weight) in MATLAB and .NET Core frameworks according to TEC 2007 and TEC 2018. In the software, three different building period evaluation options were provided, as entering the period directly, empirical calculation, and using the period calculation formula. In different period calculation scenarios, particular design input parameters such as site-specific spectral acceleration coefficients, local soil class, building importance coefficient, and structural system behavior coefficient are expected. TECSolverApp was produced in two different programming languages and published in MATLAB App Designer and ASP.NET Core MVC environments. To be shared in MATLAB App Designer, it was aimed at availability through the program and distributability as a desktop application. By deploying in ASP.NET Core MVC, open-source cross-platform coding and web-based accessibility were targeted. One of the strongest aspects of TECSolverApp is its developability thanks to software architecture. In this respect, it can be foreseen that other international seismic codes can be added to the calculations in the future.

Keywords

Acknowledgement

The first author is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) BIDEB 2211-A National Scholarship Program, and YOK (The Council of Higher Education) 100/2000 Ph.D. Scholarship Project.

References

  1. Abdel Raheem, S.E. (2013), "Evaluation of Egyptian code provisions for seismic design of moment-resisting-frame multistory buildings", Int. J. Adv. Struct. Eng., 5(1), 1-18. https://doi.org/10.1186/2008-6695-5-20.
  2. AFAD (2018), Earthquake Hazard Map of Turkey, Earthquake Department of the Disaster and Emergency Management Authority of Turkey, Ankara, Turkey.
  3. AIGM (1996), Earthquake Zones Map of Turkey, General Directorate of Disaster Affairs of Turkey, Ankara, Turkey.
  4. Akkar, S., Azak, T., Can, T.O.L.G.A., C eken, U., Demircioglu Tumsa, M.B., Duman, T.Y., ... and Zulfikar, O . (2018), "Evolution of seismic hazard maps in Turkey", Bull. Earthq. Eng., 16(8). https://doi.org/10.1007/s10518-018-0349-1.
  5. Aksoylu, C., Mobark, A., Arslan, M.H. and Erkan, I.H. (2020), "A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings", J. Constr., 19(2), 282-305. https://doi.org/10.7764/rdlc.19.2.282-305.
  6. Al-Obaidi, A., Jokhio, G. and Abu-Tair, A. (2019), "Comparison between American and Australian code through seismic effects", 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Melbourne, VIC, Australia, December.
  7. Amanat, K.M. and Hoque, E. (2006), "A rationale for determining the natural period of RC building frames having infill", Eng. Struct., 28(4), 495-502. https://doi.org/10.1016/j.engstruct.2005.09.004.
  8. Aninthaneni, P.K. and Dhakal, R.P. (2016), "Prediction of fundamental period of regular frame buildings", Bull. N.Z. Soc. Earthq. Eng., 49(2), 175-189. https://doi.org/10.5459/bnzsee.49.2.175-189.
  9. AS 1170.4 (2007), Structural Design Actions, Part 4: Earthquake Actions in Australia, NSW Standards, Sydney, Australia.
  10. ASCE7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures in Seismic Design Requirements for Building Structures, American Society of Civil Engineers, Reston, VA, USA.
  11. ASP.NET Core (2020), GitHub Repository; Microsoft Corporation, Washington, D.C., USA. https://perma.cc/3S2UMWUC
  12. Atmaca, N., Atmaca, A. and Kilcik, S. (2019), "Comparison of 2018 and 2007 Turkish earthquake regulations", Int. J. Energy Eng. Sci., 4(2), 19-25.
  13. Badkoubeh, A. and Massumi, A. (2017), "Fundamental period of vibration for seismic design of concrete shear wall buildings", Sci. Iran., 24(3), 1010-1016. https://doi.org/10.24200/sci.2017.4084.
  14. Berra, I. and Boulaouad, A. (2019), "Algerian seismic code improvement by proposition of a specific design spectrum for Algiers City", Asian J. Civil Eng., 20(7), 925-932. https://doi.org/10.1007/s42107-019-00154-w.
  15. Bourahla, N. (2013), Equivalent Static Analysis of Structures Subjected to Seismic Actions, Encyclopedia of Earthquake Engineering, Springer-Verlag Berlin, Heidelberg, Germany.
  16. Chalah, F., Chalah-Rezgui, L., Falek, K., Djellab, S.E. and Bali, A. (2014), "Fundamental vibration period of SW buildings", APCBEE Pro., 9, 354-359. https://doi.org/10.1016/j.apcbee.2014.01.062.
  17. Chart.js (2020), GitHub Repository; Chart.js Community, Online. https://perma.cc/NWC2-X2LS
  18. Derogar, S., Safkan, I. and Odabas, B. (2020), "Seismic design of mid-rise reinforced concrete structures according to TEC 2007 and TBEC 2018", IOP Conf. Ser.: Mater. Sci. Eng., 800(1), 012012. https://doi.org/10.1088/1757-899X/800/1/012012.
  19. Dilsiz, A., Mohammed, M.S., Moustafa, M.A. and O zuygur, A.R. (2020), "Seismic design and performance of reinforced concrete special moment resisting frames with wall dampers", J. Earthq. Eng., 26(2), 744-763. https://doi.org/10.1080/13632469.2019.1692741.
  20. Dingil, M., Turedi, Y. and Ornek, M. (2020), "Geoteknik Muhendisliginde Acik Kaynakli Yazilim Gelistirme Araclarinin Kullanimi: Hidrometre Deneyi Ornegi", Dicle u ni. Muh. Fak. Muh. Dergisi, 11(3), 1431-1442. https://doi.org/10.24012/dumf.754582.
  21. Dogan, G., Arslan, M.H. and Baykan, O.K. (2020), "Determination of damage levels of RC columns with a smart system oriented method", Bull. Earthq. Eng., 18(7), 3223-3245. https://doi.org/10.1007/s10518-020-00826-y.
  22. Dogangun, A. and Livaoglu, R. (2006), "A comparative study of the design spectra defined by Eurocode 8, UBC, IBC and Turkish Earthquake Code on R/C sample buildings", J. Seismol., 10(3), 335-351. https://doi.org/10.1007/s10950-006-9020-4.
  23. El-Kholy, A.M., Sayed, H. and Shaheen, A.A. (2018), "Comparison of Egyptian Code 2012 with Eurocode 8-2013, IBC 2015 and UBC 1997 for seismic analysis of residential shear-walls RC buildings in Egypt", Ain Shams Eng. J., 9(4), 3425-3436. https://doi.org/10.1016/j.asej.2018.07.004.
  24. Elci, H. (2020), "Seismic strengthening of improperly repaired reinforced concrete columns using CFRP confinement", Struct., 28, 266-275. https://doi.org/10.1016/j.istruc.2020.08.072.
  25. Erkan, I.H. and Dogan, T.P. (2019), "Comparison of equivalent seismic load and response spectrum methods according to TSC 2018 and TSC 2007", Chall. J. Struct. Mech., 5(4), 141-153. https://doi.org/10.20528/cjsmec.2019.04.003.
  26. EUROCODE 8 (2004), Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1:2004, European Committee for Standardization; Brussels, Belgium.
  27. FEMA P-2082-1 (2020), NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic Provisions for New Buildings and Other Structures, FEMA P-2082-1, Volume I: Part 1 Provisions and Part 2 Commentary, 2020 Edition, Building Seismic Safety Council, Federal Emergency Management Agency, Washington, D.C., USA.
  28. Feng, X. and Myint, S.W. (2016), "Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects", Build. Environ., 95, 346-354. https://doi.org/10.1016/j.buildenv.2015.09.019.
  29. GB 50011 (2010), Code for Seismic Design of Buildings, National Standard of the People's Republic of China, China Architecture and Building Press, Beijing, China.
  30. Genc, A.F., Ergun, M., Gunaydin, M., Altunisik, A.C., Ates, S., Okur, F.Y. and Mosallam, A.S. (2019), "Dynamic analyses of experimentally-updated FE model of historical masonry clock towers using site-specific seismic characteristics and scaling parameters according to the 2018 Turkey building earthquake code", Eng. Fail. Anal., 105, 402-426. https://doi.org/10.1016/j.engfailanal.2019.06.054.
  31. Gu, Y., Zhang, H., Guan, Z., Kang, Z., Li, Y. and Zhong, W. (1999), "New generation software of structural analysis and design optimization-JIFEX", Struct. Eng. Mech., 7(6), 589-599. https://doi.org/10.12989/sem.1999.7.6.589.
  32. Gunaydin, M. (2019), "Seismic performance evaluation of a fire-exposed historical structure using an updated finite element model", Eng. Fail. Anal., 106. https://doi.org/10.1016/j.engfailanal.2019.104149
  33. Gursoy, S., Oz, R. and Bas, S. (2015), "Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings", Comput. Concrete, 16(1), 141-161. https://doi.org/10.12989/cac.2015.16.1.141.
  34. Hachem, M.M. (2004), "BISPEC: Interactive software for the computation of unidirectional and bidirectional nonlinear earthquake spectra", Structures 2004: Building on the Past, Securing the Future, Nashville, TN, USA, May.
  35. Hu, K., Yang, Y., Mu, S. and Qu, G. (2012), "Study on high-rise structure with oblique columns by ETABS, SAP2000, MIDAS/GEN and SATWE", Proc. Eng., 31, 474-480. https://doi.org/10.1016/j.proeng.2012.01.1054.
  36. IS 1983:2016 (2016), Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings, Sixth Revision, Indian Standard, New Delhi, India.
  37. Jayalekshmi, B.R. and Chinmayi, H.K. (2014), "Effect of soil flexibility on seismic force evaluation of RC framed buildings with shear wall: A comparative study of IS 1893 and EUROCODE8", J. Struct., 2014, 493745.https://doi.org/10.1155/2014/493745.
  38. Kepenek, E., Korkmaz, K.A. and Gencel, Z. (2020), "Seismic risk investigation for reinforced concrete buildings in Antalya, Turkey", Comput. Concrete, 26(3), 203-211. https://doi.org/10.12989/cac.2020.26.3.203.
  39. Khan, M.A. (2013), Earthquake-Resistant Structures: Design, Build and Retrofit, Chapter Ten: Seismic Design for Buildings, ButterworthHeinemann, Elsevier, New York, NY, USA.
  40. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S. (2013), "TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799. https://doi.org/10.1016/j.engstruct.2013.08.002.
  41. Latifi, R. and Hadzima-Nyarko, M. (2021), "A comparison of structural analyses procedures for earthquake-resistant design of buildings", Earthq. Struct., 20(5), 531-542. https://doi.org/10.12989/eas.2021.20.5.531.
  42. Lian, M., Li, S. and Li, X.L. (2021), "Seismic story shear distribution based on inelastic state of eccentrically braced frame with vertical link composite high strength steel", Int. J. Steel Struct., 21(4), 1260-1279. https://doi.org/10.1007/s13296-021-00510-0
  43. MathWorks (2020), MATLAB App Designer; The MathWorks Inc, Natick, MA, USA. https://perma.cc/3EFH-ZGDK
  44. Menegon, S.J., Wilson, J.L., Lam, N.T. and Gad, E.F. (2020), "Development of a user-friendly and transparent non-linear analysis program for RC walls", Comput. Concrete, 25(4), 327-341. https://doi.org/10.12989/cac.2020.25.4.327.
  45. Microsoft (2020), Introduction to the C# Language and .NET. In Microsoft Docs, Microsoft Corporation; Washington, D.C., USA. https://perma.cc/6VWN-9QMB
  46. Nady, O., Mahfouz, S.Y. and Taher, S.E.D.F. (2022), "Quantification of vertical irregularities for earthquake resistant reinforced concrete buildings". Build., 12(8), 1160. https://doi.org/10.3390/buildings12081160.
  47. NRCC 2005 (2005), National Building Code of Canada, 12th Edition, Canadian Commission on Building and Fire Codes, National Research Council of Canada (NRCC), Ottawa, ON, Canada.
  48. Pakdamar, F. and Bozkurt, O. (2020), "Seismic response of anchorage elements used in curtain wall systems", Sakarya Uni. J. Sci., 24(4), 564-575. https://doi.org/10.16984/saufenbilder.447743.
  49. Panneton, M., Leger, P. and Tremblay, R. (2006), "Inelastic analysis of a reinforced concrete shear wall building according to the National Building Code of Canada 2005", Can. J. Civil Eng., 33(7), 854-871. https://doi.org/10.1139/l06-026.
  50. Pant, D.R., Constantinou, M.C. and Wijeyewickrema, A.C. (2013), "Re-evaluation of equivalent lateral force procedure for prediction of displacement demand in seismically isolated structures", Eng. Struct., 52, 455-465. https://doi.org/10.1016/j.engstruct.2013.03.013.
  51. Ruiz, S.E., Santos-Santiago, M.A., Bojorquez, E., Orellana, M.A., Valenzuela-Beltran, F., Bojorquez, J. and Barraza, M. (2021), "BRB retrofit of mid-rise soft-first-story RC moment-frame buildings with masonry infill in upper stories", J. Build. Eng., 38, 101783. https://doi.org/10.1016/j.jobe.2020.101783.
  52. Sadeghian, V. and Vecchio, F. (2015), "A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures", Comput. Concrete, 16(2), 287-309. https://doi.org/10.12989/cac.2015.16.2.287.
  53. SeismoSoft (2023), Civil Engineering Software for Structural Assessment and Structural Retrofitting; SeismoStruct, Online. https://perma.cc/9KSV-U7HP
  54. Shirmohammadi, F. and Esmaeily, A. (2016), "Software for biaxial cyclic analysis of reinforced concrete columns", Comput. Concrete, 17(3), 353-386. https://doi.org/10.12989/cac.2016.17.3.353.
  55. SkyCiv (2023), Structural Analysis and Design Software, SkyCiv Engineering; Sydney, Australia. https://perma.cc/GXC2-HWFN
  56. Sucuoglu, H. (2019), "New improvements in the 2019 building earthquake code of Turkey", Turkish J. Earthq. Res., 1(1), 1.
  57. TEC 2007 (2007), Regulation on Buildings to be Constructed in Earthquake Zones (in Turkish). The Ministry of Public Works and Housing, Ankara, Turkey.
  58. TEC 2018 (2018), Turkish Building Earthquake Code (in Turkish). Earthquake Department of the Disaster and Emergency Management Authority of Turkey, AFAD, Ankara, Turkey.
  59. Topkaya, C. and Kurban, C.O. (2009), "Natural periods of steel plate shear wall systems", J. Constr. Steel Res., 65(3), 542-551. https://doi.org/10.1016/j.jcsr.2008.03.006.
  60. Triller, J., Immel, R., Timmer, A. and Harzheim, L. (2021), "The difference-based equivalent static load method: An improvement of the ESL method's nonlinear approximation quality", Struct. Multi. Opt., 63(6), 2705-2720. https://doi.org/10.1007/s00158-020-02830-x.
  61. unal, S., Celebioglu, S. and Ozmen, B. (2014), "Seismic hazard assessment of Turkey by statistical approaches", Turkish J. Earth Sci., 23(3), 350-360. https://doi.org/10.3906/yer-1212-9.
  62. Visual Studio Code (2020), GitHub Repository; Microsoft Corporation, Washington, D.C., USA. https://perma.cc/E39E8J9D
  63. Wang, M., Yang, Z. and Gao, L. (2021), "Modification of Chinese-code formula for equivalent lateral force method", Earthq. Struct., 21(2), 137-145. https://doi.org/10.12989/eas.2021.21.2.137.
  64. Yon, B. and Onat, O. (2019), "Comparison of damage limits for 2007 Turkish seismic code and 2018 Turkey building earthquake code", International Conference on Earthquake Engineering and Seismology (5ICEES), Ankara, Turkey, October.
  65. Zajac, C. and Davis, T. (2015), "A comparative analysis for base shear calculations between six countries with moderate seismic activity", Proceedings of the AEI Conference 2015, Milwaukee, WI, USA, March.