DOI QR코드

DOI QR Code

Analysis of the second grade fluid under the influence of thermal radiation with convective heat and mass transfer

  • Khurrum Fareed (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Muzamal Hussain (Department of Mathematics,University of Sahiwal) ;
  • Muhammad Taj (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2022.04.17
  • 심사 : 2024.02.20
  • 발행 : 2024.09.25

초록

This paper investigates the second-grade fluid between two parallel plates. Fluid is produced due to stretching. Convective heat and mass transfer features are elaborated with thermal and solutal stratification. Thermal radiation and chemical reactions are also assumed in heat and mass transport processes partial differential. Formulated non-linear partial differential equations are transformed into non-linear ordinary differential equations by utilizing the suitable transformation. Convergent series solutions are computed via Homotopy Analysis Method (HAM). Effects of Hartman number, temperature field, velocity distribution and Prandtl number are sketched and analyzed through graphs. It is noticed that velocity field first decreases and after some distance it shows increasing behavior by the increment.

키워드

참고문헌

  1. Abro, K.A. (2016), "Porous effects on second grade fluid in oscillating plate", J. Appl. Environ. Biol. Sci., 6(5), 17-82.
  2. Abro, K.A., Abro, I.A., Almani, S.M. and Khan, I. (2019), "On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative", J. King Saud Univ. Sci., 31(4), 973-979. https://doi.org/10.1016/j.jksus.2018.07.012.
  3. Abro, K.A., Chandio, A.D., Abro, I.A. and Khan, I. (2019), "Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium", J. Therm. Anal. Calorimet., 135(4), 2197-2207. https://doi.org/10.1007/s10973-018-7302-z.
  4. Abro, K.A., Hussain, M. and Baig, MM. (2017), "Analytical solution of magnetohydrodynamics generalized Burger's fluid embedded with porosity", Int. J. Adv. Appl. Sci., 4(7), 80-89. https://doi.org/10.21833/ijaas.2017.07.012.
  5. Abro, K.A., Memon, A.A. and Uqaili, M.A. (2018), "A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives", Eur. Phys. J. Plus, 133(3), 1-9. https://doi.org/10.1140/epjp/i2018-11953-8.
  6. Ahmed, T.N. and Khan, I. (2018), "Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models", Result. Phys., 8, 752-757. https://doi.org/10.1016/j.rinp.2018.01.004.
  7. Alhassan, M.A., Al-Rousan, R.Z. and Hejazi, M.A. (2021), "Concerning the tensor-based flexural formulation: Applications", Struct. Eng. Mech., 77(6), 765-777. https://doi.org/10.12989/sem.2021.77.6.765.
  8. Ali Abro, K. and Anwar Solangi, M. (2020), "Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo-Fabrizoi fractional derivatives", Punjab Univ. J. Math., 49(2), 1.
  9. Ali, F., Norzieha, M., Sharidan, S., Khan, I. and Hayat, T. (2012), "New exact solutions of Stokes' second problem for an MHD second grade fluid in a porous space", Int. J. Non-Linear Mech., 47(5), 521-525. https://doi.org/10.1016/j.ijnonlinmec.2011.09.027.
  10. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  11. Chamkha, A.J., Menni, Y. and Ameur, H. (2021), "Thermal-aerodynamic performance measurement of air heat transfer fluid mechanics over s-shaped fins in shell-and-tube heat exchangers", J. Appl. Comput. Mech., 7(4), 1931-1943. https://doi.org/10.22055/jacm.2020.32107.1970.
  12. Dunn, J. and Rajagopal, K. (1995), "Fluids of differential type: Critical review and thermodynamic analysis", Int. J. Eng. Sci., 33(5), 689-729. https://doi.org/10.1016/0020-7225(94)00078-X.
  13. Dunn, J.E. and Fosdick, R.L. (1974), "Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade", Arch. Rational Mech., 56(3), 191-252. https://doi.org/10.1007/BF00280970.
  14. Fetecau, C. and Fetecau, C. (2005), "Starting solutions for some unsteady unidirectional flows of a second grade fluid", Int. J. Eng. Sci., 43(10), 781-789. https://doi.org/10.1016/j.ijengsci.2004.12.009.
  15. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO 2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  16. Gomez-Aguilar, J.F., Morales-Delgado, V.F., Taneco-Hernandez, M.A., Baleanu, D., Escobar-Jimenez, R.F. and Al Qurashi, M.M. (2016), "Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels", Entropy, 18(8), 402. https://doi.org/10.3390/e18080402.
  17. Hayat, T. and Alsaedi, A. (2011), "On thermal radiation and Joule heating effects in MHD flow of an Oldroyd-B fluid with thermophoresis", Arab. J. Sci. Eng., 36(6), 1113-1124. https://doi.org/10.1007/s13369-011-0066-4.
  18. Hayat, T., Hutter, K., Nadeem, S. and Asghar, S. (2004), "Unsteady hydromagnetic rotating flow of a conducting second grade fluid", J. Appl. Math. Phys. (ZAMP), 55(4), 626-641. https://doi.org/10.1007/s00033-004-1129-0.
  19. Hayat, T., Jabeen, S., Shafiq, A. and Alsaedi, A. (2016), "Radiative squeezing flow of second grade fluid with convective boundary conditions", PloS one, 11(4), e0152555. https://doi.org/10.1371/journal.pone.0152555.
  20. Hristov, J. (2017), "Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffreys Kernel and analytical solutions", Therm. Sci., 21(2), 827-839.
  21. Hussanan, A., Salleh, M.Z. and Khan, I. (2018), "Microstructure and inertial characteristics of a magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model", J. Mol. Liq., 255, 64-75. https://doi.org/10.1016/j.molliq.2018.01.138
  22. Khan, N.S., Gul, T., Islam, S. and Khan, W. (2017a), "Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet", Eur. Phys. J. Plus, 132(1), 1-20. https://doi.org/10.1140/epjp/i2017-11277-3.
  23. Khan, U., Ahmed, N. and Mohyud-Din, S.T. (2017b), "Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls", Result. Phys., 7, 361-372. https://doi.org/10.1016/j.rinp.2016.12.020.
  24. Khan, Z., Khan, I., Ullah, M. and Tlili, I. (2018), "Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction", Result. Phys., 9, 1086-1095. https://doi.org/10.1016/j.rinp.2018.03.041.
  25. Khosravi, R., Teymourtash, A.R., Passandideh Fard, M., Rabiei, S. and Bahiraei, M. (2021), "Numerical study and optimization of thermohydraulic characteristics of a graphene-platinum nanofluid in finned annulus using genetic algorithm combined with decision-making technique", Eng. Comput., 37(3), 2473-2491. https://doi.org/10.1007/s00366-020-01178-6.
  26. Kumar, S., Tejani, G.G., Pholdee, N. and Bureerat, S. (2021), "Multi-objective modified heat transfer search for truss optimization", Eng. Comput., 37(4), 3439-3454. https://doi.org/10.1007/s00366-020-01010-1.
  27. Labropulu, F. and Li, D. (2016), "Unsteady stagnation-point flow of a second-grade fluid", J. Fluid Flow Heat Mass Transf. (JFFHMT), 3(1), 17-24. https://doi.org/10.11159/jffhmt.2016.003.
  28. Laghari, M.H., Abro, K.A. and Shaikh, A.A. (2017), "Helical flows of fractional viscoelastic fluid in a circular pipe", Int. J. Adv. Appl. Sci., 4(10), 97-105. https://doi.org/10.21833/ijaas.2017.010.014.
  29. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  30. Li, S., Abbas, T., Al-Khaled, K., Khan, S.U., Ul Haq, E., Abdullaev, S.S. and Khan, M.I. (2023d), "Insight into the heat transfer across the dynamics of Burger fluid due to stretching and buoyancy forces when thermal radiation and heat source are significant", Pramana, 97(4), 196. https://doi.org/10.1007/s12043-023-02678-y.
  31. Li, S., Abbasi, A., Farooq, W., Gul, M., Khan, M.I., Nafasova, G. and Hejazi, H.A. (2024b), "Heat and mass transfer characteristics of Al2O3/H2O and (Al2O3+ Ag)/H2O nanofluids adjacent to a solid sphere: A theoretical study", Numer. Heat Transf. Part A: Appl., 2024, 1-19. https://doi.org/10.1080/10407782.2024.2306177.
  32. Li, S., Imtiaz, M., Ijaz Khan, M., Kumar, R.N. and Akramova, K.S. (2024a), "Applications of Soret and Dufour effects for Maxwell nanomaterial by convectively heated surface", Numer. Heat Transf. Part A: Appl., 2024, 1-15. https://doi.org/10.1080/10407782.2024.2314224.
  33. Li, S., Khan, M.I., Ali, F., Abdullaev, S.S., Saadaoui, S. and Habibullah. (2023c), "Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity", Appl. Math. Mech., 44(11), 2005-2018. https://doi.org/10.1007/s10483-023-3044-5.
  34. Li, S., Khan, M.I., Khan, S.U., Abdullaev, S., Mohamed, M.M.I. and Amjad, M.S. (2023a), "Effectiveness of melting phenomenon in two phase dusty carbon nanotubes (Nanomaterials) flow of Eyring-Powell fluid: Heat transfer analysis", Chin. J. Phys., 86, 160-169. https://doi.org/10.1016/j.cjph.2023.09.013.
  35. Li, S., Rajashekhar, C., Nisar, K.S., Mebarek-Oudina, F., Vaidya, H., Khan, M.I., ... and Manjunatha, G. (2023b), "Peristaltic transport of a Ree-Eyring fluid with non-uniform complaint channel: An analysis through varying conditions", ZAMM J. Appl. Math. Mech., 104(2), e202300073. https://doi.org/10.1002/zamm.202300073.
  36. Li, S., Safdar, M., Taj, S., Bilal, M., Ahmed, S., Khan, M.I., ... and Abdullaev, S.S. (2023e), "Generalised Lie similarity transformations for the unsteady flow and heat transfer under the influence of internal heating and thermal radiation", Pramana, 97(4), 203. https://doi.org/10.1007/s12043-023-02672-4.
  37. Li, X., Liu, Y., Wang, Y. and Zou, C. (2021), "Separation of tumor cells from the peripheral blood via a novel electro hydrodynamics model", Adv. Nano Res., 10(6), 577-589. https://doi.org/10.12989/anr.2021.10.6.577.
  38. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  39. Makinde, O.D., Adesanya, S.O. and Ferdows, M. (2020), "A note on the hydromagnetic blasius flow with variable thermal conductivity", J. Appl. Comput. Mech., 7(4), 1925-1930. https://doi.org/10.22055/jacm.2020.32638.2051.
  40. Mao, A., Luo, J., Li, Y., Wang, R., Li, G. and Guo, Y. (2011), "Engineering design of thermal quality clothing on a simulation-based and lifestyle-oriented CAD system", Eng. Comput., 27(4), 405-421. https://doi.org/10.1007/s00366-011-0224-z.
  41. Mishra, S., Khan, I., Al-Mdallal, Q. and Asifa, T. (2018), "Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source", Case Stud. Therm. Eng., 11, 113-119. https://doi.org/10.1016/j.csite.2018.01.005.
  42. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  43. Munson, B.R., Okiishi, T.H., Huebsch, W.W. and Rothmayer, A.P. (2013), Fluid Mechanics, John Wiley & Sons Singapore Pte. Ltd., Capitol Singapore, Singapore.
  44. Nadeem, S. (2006), "Hall effects on unsteady motions of a generalized second-grade fluid through a porous medium", J. Porous Media, 9(8), 779-788. https://doi.org/10.1615/JPorMedia.v9.i8.60.
  45. Pandit, S. and Sharma, S. (2022), "Sensitivity analysis of emerging parameters in the presence of thermal radiation on magnetohydrodynamic nanofluids via wavelets", Eng. Comput., 38(3), 2609-2618. https://doi.org/10.1007/s00366-020-01221-6.
  46. Sedighi, H.M. and Shirazi, K.H. (2011), "Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy", Int. Rev. Mech. Eng., 5(5), 941-946.
  47. Sedighi, H.M., Shirazi, K.H. and Zare, J. (2012), "An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method", Int. J. Non-Linear Mech., 47(7), 777-784. https://doi.org/10.1016/j.ijnonlinmec.2012.04.008.
  48. Vieru, D., Siddique, I., Kamran, M. and Fetecau, C. (2008), "Energetic balance for the flow of a second-grade fluid due to a plate subject to a shear stress", Comput. Math. Appl., 56(4), 1128-1137. https://doi.org/10.1016/j.camwa.2008.02.013.
  49. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  50. Zhao, Y. and Liao, S. (2014), "Chapter 9: HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems", Advances in the Homotopy Analysis Method, World Scientific, Singapore.