참고문헌
- Abdullah, R., Paton Cole, V.P. and Easterling, W.S. (2007), "Quasi-static analysis of composite slab", Malaysian J. Civil Eng., 19(2), 91-103. https://doi.org/10.11113/mjce.v19.15748.
- Akkaya, S.T., Mercimek, O., Ghoroubi, R., Anil, O., Erbas, Y. and Yilmaz, T. (2022), "Experimental, analytical, and numerical investigation of punching behaviour of two-way RC slab with multiple openings", Struct., 43, 574-593. https://doi.org/10.1016/j.istruc.2022.06.070.
- Al-Rousan, R.Z. and Bara'a, R.A. (2023), "Punching shear code provisions examination against the creation of an opening in existed RC flat slab of various sizes and locations", Struct., 49, 875-888. https://doi.org/10.1016/j.istruc.2023.02.007.
- Albrifkani, S. and Wang, Y.C. (2016), "Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire", Eng. Struct., 121, 97-119. https://doi.org/10.1016/j.engstruct.2016.04.032.
- Ali, O., Abbas, A., Khalil, E. and Bigaud, D. (2023), "A new robust equation for shear strength of GFRP-RC deep beams using hybrid experimental and synthetic data based-FE quasi-static analysis procedure", Eng. Struct., 293, 116652. https://doi.org/10.1016/j.engstruct.2023.116652.
- Alrousan, R.Z. and Bara'a, R.A. (2022), "The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions", Struct., 44, 101-119. https://doi.org/10.1016/j.istruc.2022.07.091.
- Alrousan, R.Z. and Bara'a, R.A. (2022), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Stud. Constr. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
- Amirkhani, S. and Lezgy-Nazargah, M. (2022), "Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects", Struct. Concrete, 23(5), 2820-2836. https://doi.org/10.1002/suco.202100532.
- Arabzadeh, H. and Galal, K. (2015), "Effectiveness of FRP wraps for retrofitting of existing RC shear walls", Proceeding of the 11th Canadian Conference on Earthquake Engineering, Victoria, BC, Canada, July.
- Beaulieu, P.M. and Polak, M.A. (2023), "Finite element model for concrete slab-column connections with shear reinforcement", J. Struct. Eng., 149(12), 04023177. https://doi.org/10.1061/jsendh.steng-12386.
- Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", ACI Struct. J., 82(6), 797-804. https://doi.org/10.14359/10390.
- CEB-FIP (1993), CEB-FIP Model Code 1990: Design Code, fib, Lausanne, Switzerland.
- American Concrete Institute (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- De Sousa, A.M., Lantsoght, E.O., Genikomsou, A.S., Prado, L.P. and Mounir, K. (2023), "NLFEA of one-way slabs in transition between shear and punching: Recommendations for modeling", Eng. Struct., 293, 116617. https://doi.org/10.1016/j.engstruct.2023.116617.
- Dinh, P.T., Doh, J.H., Fragomeni, S., Ho, N.M. and Peters, T. (2023), "Numerical modeling techniques and investigation into the flexural behavior of two-way posttensioned concrete slabs with profiled steel sheeting", Struct. Concrete, 24(2), 2674-2698, https://doi.org/10.1002/suco.202200180.
- El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Nonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floor", Struct., 50, 1809-1826. https://doi.org/10.1016/j.istruc.2023.02.122.
- El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Numerical assessment of punching shear strength of eccentrically loaded footings with nonconventional shear reinforcement", Struct., 49, 716-729. https://doi.org/10.1016/j.istruc.2023.01.147.
- El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Numerical investigations on punching shear behavior of eccentrically loaded reinforced concrete footings", Eng. Struct., 279, 115598. https://doi.org/10.1016/j.engstruct.2023.115598.
- El-Naqeeb, M.H., El-Metwally, S.E. and Abdelwahed, B.S. (2022), "Performance of exterior beam-column connections with innovative bar anchorage schemes: Numerical investigation", Struct., 44, 534-547. https://doi.org/10.1016/j.istruc.2022.08.034.
- Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
- Hamoda, A. and Hossain, K. (2019), "Numerical assessment of slab-column connection additionally reinforced with steel and CFRP bars", Arab. J. Sci. Eng., 44, 8181-8204. https://doi.org/10.1007/s13369-019-03846-2.
- Hognestad, E. (1951), "Study of combined bending and axial load in RC members", Engineering Experimental Station Bulletin Series No. 399, University of Illinois, Champaign, IL.
- Husem, M. and Cosgun, S.I. (2016), "Behavior of reinforced concrete plates under impact loading: Different support conditions and sizes", Comput. Concrete, 18(3), 389-404. https://doi.org/10.12989/cac.2016.18.3.389.
- Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Found. Civil Environ. Eng., 6(1), 53-69.
- Lee, S.H., Abolmaali, A., Shin, K.J. and Lee, H.D. (2020), "ABAQUS modeling for post-tensioned reinforced concrete beams", J. Build. Eng., 30, 101273. https://doi.org/10.1016/j.jobe.2020.101273.
- Liu, C., Yang, Y., Wang, J.J., Fan, J.S., Tao, M.X. and Mo, Y. (2020), "Biaxial reinforced concrete constitutive models for implicit and explicit solvers with reduced mesh sensitivity", Eng. Struct., 219, 110880. https://doi.org/10.1016/j.engstruct.2020.110880.
- Liu, X., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108, 54-65. https://doi.org/10.1016/j.finel.2015.09.004.
- Massicotte, B., Elwi, A.E. and MacGregor, J.G. (1990), "Tension-stiffening model for planar reinforced concrete members", J. Struct. Eng., 116(11), 3039-3058. https://doi.org/10.1061/(asce)0733-9445(1990)116:11(3039).
- Mercimek, O., Ghoroubi, R., Erbas, Y. and Anil, O. (2022), "Comparison of strengthening methods to improve punching behavior of two-way RC flat slabs", Struct., 46, 1495-1516. https://doi.org/10.1016/j.istruc.2022.11.018.
- Michal, S. and Andrzej, W. (2015), "Calibration of the CDP model parameters in Abaqus", The 2015 World Congress on Advances in Structual Engineering and Mechanics, Incheon, Korea, August.
- Neuberger, Y.M., Andrade, M.V., de Sousa, A.M.D., Bandieira, M., da Silva Junior, E.P., dos Santos, H.F., Catoia, B., Bolandim, E.A., de Moura Aquino, V.B. and Christoforo, A.L. (2023), "Numerical analysis of reinforced concrete corbels using concrete damage plasticity: Sensitivity to material parameters and comparison with analytical models", Build., 13(11), 2781. https://doi.org/10.3390/buildings13112781.
- Othman, H. and Marzouk, H. (2017), "Finite-element analysis of reinforced concrete plates subjected to repeated impact loads", J. Struct. Eng., 143(9), 04017120. https://doi.org/10.1061/(asce)st.1943-541x.0001852.
- Panahi, H. and Genikomsou, A.S. (2022), "Comparative evaluation of concrete constitutive models in non-linear finite element simulations of slabs with different flexural reinforcement ratios", Eng. Struct., 252, 113617. https://doi.org/10.1016/j.engstruct.2021.113617.
- Raza, A. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019(1), 1745341. https://doi.org/10.1155/2019/1745341.
- Raza, A. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383.
- Simulia (2020), Simulia, Dassault Systemes Simulia Corp., Providence, RI, USA.
- Thorenfeldt, E. (1987), "Mechanical properties of high-strength concrete and applications in design", Symposium Proceedings, Utilization of High-Strength Concrete, Stavanger, Norway, June.
- Tysmans, T., Wozniak, M., Remy, O. and Vantomme, J. (2015), "Finite element modelling of the biaxial behaviour of high-performance fibre-reinforced cement composites (HPFRCC) using Concrete Damaged Plasticity", Finite Elem. Anal. Des., 100, 47-53. https://doi.org/10.1016/j.finel.2015.02.004.
- Ungermann, J., Schmidt, P., Christou, G. and Hegger, J. (2022), "Eccentric punching tests on column bases-Influence of column geometry", Struct. Concrete, 23(3), 1316-1332. https://doi.org/10.1002/suco.202100744.
- Ungermann, J., Schmidt, P., Classen, M. and Hegger, J. (2022), "Eccentric punching tests on column bases-new insights into the inner concrete strain development", Eng. Struct., 262, 114273. https://doi.org/10.1016/j.engstruct.2022.114273.
- Wang, T. and Hsu, T.T. (2001), "Nonlinear finite element analysis of concrete structures using new constitutive models", Comput. Struct., 79(32), 2781-2791. https://doi.org/10.1016/s0045-7949(01)00157-2.
- Wosatko, A., Pamin, J. and Polak, M.A. (2015), "Application of damage-plasticity models in finite element analysis of punching shear", Comput. Struct., 151, 73-85. https://doi.org/10.1016/j.compstruc.2015.01.008.
- Yu, P., Ren, Z., Chen, Z. and Bordas, S.P.A. (2023), "A multiscale finite element model for prediction of tensile strength of concrete", Finite Elem. Anal. Des., 215, 103877. https://doi.org/10.1016/j.finel.2022.103877.
- Zheng, B., Zheng, W., Cao, B. and Zhang, Y. (2023), "Nonlinear finite element analysis of non-symmetrical punching shear of rectangular flat slabs supported on square columns", Eng. Struct., 277, 115451. https://doi.org/10.1016/j.engstruct.2022.115451.
- Zheng, B., Zheng, W., Wang, L. and Zhang, Y. (2023), "Effect of column size on punching behavior of flat slabs with square columns: Numerical investigation", J. Build. Eng., 79, 107937. https://doi.org/10.1016/j.jobe.2023.107937.