과제정보
The authors would like to express their gratitude to King Khalid University's Deanship Scientific Research for funding this work as part of a large group research project with grant number RGP2/463/44.
참고문헌
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Al-Qattan, M.N., Deb, P.K. and Tekade, R.K.(2018), "Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery", Drug Discov. Today, 23(2), 235-250. https://doi.org/10.1016/j.drudis.2017.10.002.
- Belarbi, M.O., Salami, S.J., Garg, A., Daikh, A.A., Houari, M.S.A., Dimitri, R. and Tornabene, F. (2023), "Mechanical behavior analysis of FG-CNT-reinforced polymer composite beams via a hyperbolic shear deformation theory", Continuum Mech. Thermodyn., 35(2), 497-520. https://doi.org/10.1007/s00161-023-01191-2.
- Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircr. Spacecr. Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
- Boyina, K., Piska, R. and Natarajan, S. (2023), "Nonlocal strain gradient model for thermal buckling analysis of functionally graded nanobeams", Acta Mech., 234, 5053-5069. https://doi.org/10.1007/s00707-023-03637-9.
- Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mech., 231, 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Eroglu, M., Esen, I. And Koc, M.A. (2023), "Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory", Acta Mech., 235(2), 1175-1211. https://doi.org/10.1007/s00707-023-03793-y.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 2022, 1-20. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Garip, Z.S. and Eren, E. (2023b), "The effects of the foam and FGM distributions on thermomechanical buckling response of sandwich plates", Acta Mech., 235(2), 1319-1343. https://doi.org/10.1007/s00707-023-03808-8.
- Esen, I., Koc, M.A. and Eroglu, M. (2023a), "Effect of functionally graded carbon nanotube reinforcement on the dynamic response of composite beams subjected to a moving charge", J. Vib. Eng. Technol., 12(3), 5203-5218. https://doi.org/10.1007/s42417-023-01192-0.
- Esen, I., Tran, T.T. and Nguyen, D.K. (2022), "Dynamic response of FG-CNTRC beams subjected to a moving mass", Viet. J. Sci. Technol., 60(5), 853-868. https://doi.org/10.1007/s10999-022-09610-z.
- Flahaut, E., Peigney, A., Laurent, C., Marliere, C., Chastel, F. and Rousset, A. (2000), "Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties", Acta Mater., 48(14), 3803-3812. https://doi.org/10.1016/S1359-6454(00)00147-6.
- Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., ... and Shimizu, T. (2005), "Measuring the thermal conductivity of a single carbon nanotube", Phys. Rev. Lett., 95(6), 065502. https://doi.org/10.1103/PhysRevLett.95.065502.
- Govindjee, S. and Sackman, J.L. (1999), "On the use of continuum mechanics to estimate the properties of nanotubes", Solid State Commun., 110(4), 227-230. https://doi.org/10.1016/S0038-1098(98)00626-7.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11(5), 1350077. https://doi.org/10.1142/S0219876213500771.
- Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
- Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mech., 228, 1303- 1319. https://doi.org/10.1007/s00707-016-1781-4.
- Kiarasi, F., Asadi, A., Babaei, M., Asemi, K. and Hosseini, M. (2022), "Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading", J. Comput. Appl. Mech., 53(1), 1-23. https://doi.org/10.22059/JCAMECH.2022.339008.693.
- Koc, M.A., Eroglu, M. and Esen, I. (2022), "Dynamic analysis of high-speed train moving on perforated Timoshenko and Euler-Bernoulli beams", Int. J. Mech. Mater. Des., 18(4), 893-917. https://doi.org/10.1007/s10999-022-09610-z.
- Koc, M.A., Esen, I. and Eroglu, M. (2023), "Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity", Mech. Adv. Mater. Struct., 31(18), 4477-4509. https://doi.org/10.1080/15376494.2023.2199412.
- Liu, D. and Yao, G. (2023), "Time-varying stability and vibration properties of a pyrotechnic ejection plate in narrow space", Mech. Syst. Signal Pr., 185, 109759. https://doi.org/10.1016/j.ymssp.2022.109759.
- Mahesh, V. and Harursampath, D. (2022), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059.
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
- Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083.
- O'connell, M.J. (2018), Carbon Nanotubes: Properties and Applications, CRC Press, Boca Raton, FL, USA.
- Ozdemir, O.,Esen, I. and Ural, H. (2023), "Vibration response of rotating carbon nanotube reinforced composites in thermal environment", Steel Compos. Struct., 47(1), 1-17. https://doi.org/10.12989/scs.2023.47.1.001.
- Perez-Davis, M.E., Loyselle, P.L., Hoberecht, M.A., Manzo, M.A., Kohout, L.L., Burke, K.A. and Cabrera, C.R. (2001), "Energy storage for aerospace applications", 36th Intersociety Energy Conversion Engineering Conference (No. IECEC2001-AT-08), Savannah, GA, USA, July-August.
- Popov, V.N. (2004), "Carbon nanotubes: Properties and application", Mater. Sci. Eng. R: Rep., 43(3), 61-102. https://doi.org/10.1016/j.mser.2003.10.001.
- Ramesh, R.D., Santhosh, A. and Syamala, S.R.N.A. (2020), "Implementation of nanotechnology in the aerospace and aviation industry", Smart Nanotechnology with Applications, CRC Press, Boca Raton, FL, USA.
- Regi, M. (2007), "Synthesis, characterization and application of carbon nanotubes: The case of aerospace engineering", Nanofibers and Nanotechnology in Textiles, Woodhead Publishing, Cambridge, UK.
- Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.
- Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carb., 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.
- Shahraki, H., TajmirRiahi, H., Izadinia, M. and Talaeitaba, S.B. (2020), "Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory", J. Vib. Control, 26(5-6), 277-305. https://doi.org/10.1177/1077546319878976.
- Sharma, L.K., Grover, N. and Bhardwaj, G. (2023), "Buckling and free vibration analysis of temperature-dependent functionally graded CNT-reinforced plates", J. Vib. Eng. Technol., 11(1), 175-192. https://doi.org/10.1016/j.matpr.2018.10.158.
- Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071.
- Stanciu, N.V., Stan, F., Sandu, I.L., Fetecau, C. and Turcanu, A.M. (2021), "Thermal, rheological, mechanical, and electrical properties of polypropylene/multi-walled carbon nanotube nanocomposites", Polym., 13(2), 187. https://doi.org/10.3390/polym13020187.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Timesli, A. (2022), "Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique", Phys. Mesomech., 25(2), 129-141. https://doi.org/10.1134/S1029959922020047.
- Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702.
- Wang, Z. and Yao, G. (2024), "Nonlinear vibration and stability of sandwich functionally graded porous plates reinforced with graphene platelets in subsonic flow on elastic foundation", Thin Wall. Struct., 194, 111327. https://doi.org/10.1016/j.tws.2023.111327.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
- Wu, Z., Zhang, Y. and Yao, G. (2020), "Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells", Acta Mech., 231, 2497-2519. https://doi.org/10.1007/s00707-020-02650-6.
- Wu, Z., Zhang, Y. and Yao, G. (2023), "Natural frequency and stability analysis of axially moving functionally graded carbon nanotube-reinforced composite thin plates", Acta Mech., 234, 1009-1031. https://doi.org/10.1007/s00707-022-03439-5.
- Yao, G. and Liu, D. (2022), "Aeroelastic stability analysis of a pyrotechnic separation plate in subsonic airflow", Appl. Math. Model., 107, 574-590. https://doi.org/10.1016/j.apm.2022.03.007.
- Yao, Z., Zhu, C.C., Cheng, M. and Liu, J. (2001), "Mechanical properties of carbon nanotube by molecular dynamics simulation", Comput. Mater. Sci., 22(3-4), 180-184. https://doi.org/10.1016/S0927-0256(01)00187-2.
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessel. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
- Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
- Yildiz, T. and Esen, I. (2023), "Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material", Acta Mech., 234(12), 6407-6437. https://doi.org/10.1007/s00707-023-03722-z.
- Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.
- Zhang, Y. and Liu, W. (2022), "Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method", Acta Mech., 233, 3157-3174. https://doi.org/10.1007/s00707-022-03273-9.
- Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D.W. and Wong, C.P. (2006), "Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays", Carb., 44(2), 253-258. https://doi.org/10.1016/j.carbon.2005.07.037.