DOI QR코드

DOI QR Code

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Mohamed Zidour (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Abdeldjebbar Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Zakaria Belabed (Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, Institute of Technology, Naama University Center) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Mohamed Abdelaziz Salem (Department of Mechanical Engineering, College of Engineering, King Khalid University) ;
  • Khaled Mohamed Khedher (Department of Civil Engineering, College of Engineering, King Khalid University)
  • 투고 : 2023.12.14
  • 심사 : 2024.02.05
  • 발행 : 2024.09.25

초록

This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

키워드

과제정보

The authors would like to express their gratitude to King Khalid University's Deanship Scientific Research for funding this work as part of a large group research project with grant number RGP2/463/44.

참고문헌

  1. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  2. Al-Qattan, M.N., Deb, P.K. and Tekade, R.K.(2018), "Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery", Drug Discov. Today, 23(2), 235-250. https://doi.org/10.1016/j.drudis.2017.10.002.
  3. Belarbi, M.O., Salami, S.J., Garg, A., Daikh, A.A., Houari, M.S.A., Dimitri, R. and Tornabene, F. (2023), "Mechanical behavior analysis of FG-CNT-reinforced polymer composite beams via a hyperbolic shear deformation theory", Continuum Mech. Thermodyn., 35(2), 497-520. https://doi.org/10.1007/s00161-023-01191-2.
  4. Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircr. Spacecr. Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
  5. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
  6. Boyina, K., Piska, R. and Natarajan, S. (2023), "Nonlocal strain gradient model for thermal buckling analysis of functionally graded nanobeams", Acta Mech., 234, 5053-5069. https://doi.org/10.1007/s00707-023-03637-9.
  7. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mech., 231, 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
  8. Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  9. Eroglu, M., Esen, I. And Koc, M.A. (2023), "Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory", Acta Mech., 235(2), 1175-1211. https://doi.org/10.1007/s00707-023-03793-y.
  10. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 2022, 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  11. Esen, I., Garip, Z.S. and Eren, E. (2023b), "The effects of the foam and FGM distributions on thermomechanical buckling response of sandwich plates", Acta Mech., 235(2), 1319-1343. https://doi.org/10.1007/s00707-023-03808-8.
  12. Esen, I., Koc, M.A. and Eroglu, M. (2023a), "Effect of functionally graded carbon nanotube reinforcement on the dynamic response of composite beams subjected to a moving charge", J. Vib. Eng. Technol., 12(3), 5203-5218. https://doi.org/10.1007/s42417-023-01192-0.
  13. Esen, I., Tran, T.T. and Nguyen, D.K. (2022), "Dynamic response of FG-CNTRC beams subjected to a moving mass", Viet. J. Sci. Technol., 60(5), 853-868. https://doi.org/10.1007/s10999-022-09610-z.
  14. Flahaut, E., Peigney, A., Laurent, C., Marliere, C., Chastel, F. and Rousset, A. (2000), "Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties", Acta Mater., 48(14), 3803-3812. https://doi.org/10.1016/S1359-6454(00)00147-6.
  15. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., ... and Shimizu, T. (2005), "Measuring the thermal conductivity of a single carbon nanotube", Phys. Rev. Lett., 95(6), 065502. https://doi.org/10.1103/PhysRevLett.95.065502.
  16. Govindjee, S. and Sackman, J.L. (1999), "On the use of continuum mechanics to estimate the properties of nanotubes", Solid State Commun., 110(4), 227-230. https://doi.org/10.1016/S0038-1098(98)00626-7.
  17. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  18. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11(5), 1350077. https://doi.org/10.1142/S0219876213500771.
  19. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  20. Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mech., 228, 1303- 1319. https://doi.org/10.1007/s00707-016-1781-4.
  21. Kiarasi, F., Asadi, A., Babaei, M., Asemi, K. and Hosseini, M. (2022), "Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading", J. Comput. Appl. Mech., 53(1), 1-23. https://doi.org/10.22059/JCAMECH.2022.339008.693.
  22. Koc, M.A., Eroglu, M. and Esen, I. (2022), "Dynamic analysis of high-speed train moving on perforated Timoshenko and Euler-Bernoulli beams", Int. J. Mech. Mater. Des., 18(4), 893-917. https://doi.org/10.1007/s10999-022-09610-z.
  23. Koc, M.A., Esen, I. and Eroglu, M. (2023), "Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity", Mech. Adv. Mater. Struct., 31(18), 4477-4509. https://doi.org/10.1080/15376494.2023.2199412.
  24. Liu, D. and Yao, G. (2023), "Time-varying stability and vibration properties of a pyrotechnic ejection plate in narrow space", Mech. Syst. Signal Pr., 185, 109759. https://doi.org/10.1016/j.ymssp.2022.109759.
  25. Mahesh, V. and Harursampath, D. (2022), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059.
  26. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  27. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
  28. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083.
  29. O'connell, M.J. (2018), Carbon Nanotubes: Properties and Applications, CRC Press, Boca Raton, FL, USA.
  30. Ozdemir, O.,Esen, I. and Ural, H. (2023), "Vibration response of rotating carbon nanotube reinforced composites in thermal environment", Steel Compos. Struct., 47(1), 1-17. https://doi.org/10.12989/scs.2023.47.1.001.
  31. Perez-Davis, M.E., Loyselle, P.L., Hoberecht, M.A., Manzo, M.A., Kohout, L.L., Burke, K.A. and Cabrera, C.R. (2001), "Energy storage for aerospace applications", 36th Intersociety Energy Conversion Engineering Conference (No. IECEC2001-AT-08), Savannah, GA, USA, July-August.
  32. Popov, V.N. (2004), "Carbon nanotubes: Properties and application", Mater. Sci. Eng. R: Rep., 43(3), 61-102. https://doi.org/10.1016/j.mser.2003.10.001.
  33. Ramesh, R.D., Santhosh, A. and Syamala, S.R.N.A. (2020), "Implementation of nanotechnology in the aerospace and aviation industry", Smart Nanotechnology with Applications, CRC Press, Boca Raton, FL, USA.
  34. Regi, M. (2007), "Synthesis, characterization and application of carbon nanotubes: The case of aerospace engineering", Nanofibers and Nanotechnology in Textiles, Woodhead Publishing, Cambridge, UK.
  35. Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.
  36. Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carb., 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.
  37. Shahraki, H., TajmirRiahi, H., Izadinia, M. and Talaeitaba, S.B. (2020), "Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory", J. Vib. Control, 26(5-6), 277-305. https://doi.org/10.1177/1077546319878976.
  38. Sharma, L.K., Grover, N. and Bhardwaj, G. (2023), "Buckling and free vibration analysis of temperature-dependent functionally graded CNT-reinforced plates", J. Vib. Eng. Technol., 11(1), 175-192. https://doi.org/10.1016/j.matpr.2018.10.158.
  39. Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071.
  40. Stanciu, N.V., Stan, F., Sandu, I.L., Fetecau, C. and Turcanu, A.M. (2021), "Thermal, rheological, mechanical, and electrical properties of polypropylene/multi-walled carbon nanotube nanocomposites", Polym., 13(2), 187. https://doi.org/10.3390/polym13020187.
  41. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259. 
  42. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  43. Timesli, A. (2022), "Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique", Phys. Mesomech., 25(2), 129-141. https://doi.org/10.1134/S1029959922020047.
  44. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702.
  45. Wang, Z. and Yao, G. (2024), "Nonlinear vibration and stability of sandwich functionally graded porous plates reinforced with graphene platelets in subsonic flow on elastic foundation", Thin Wall. Struct., 194, 111327. https://doi.org/10.1016/j.tws.2023.111327.
  46. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  47. Wu, Z., Zhang, Y. and Yao, G. (2020), "Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells", Acta Mech., 231, 2497-2519. https://doi.org/10.1007/s00707-020-02650-6.
  48. Wu, Z., Zhang, Y. and Yao, G. (2023), "Natural frequency and stability analysis of axially moving functionally graded carbon nanotube-reinforced composite thin plates", Acta Mech., 234, 1009-1031. https://doi.org/10.1007/s00707-022-03439-5.
  49. Yao, G. and Liu, D. (2022), "Aeroelastic stability analysis of a pyrotechnic separation plate in subsonic airflow", Appl. Math. Model., 107, 574-590. https://doi.org/10.1016/j.apm.2022.03.007.
  50. Yao, Z., Zhu, C.C., Cheng, M. and Liu, J. (2001), "Mechanical properties of carbon nanotube by molecular dynamics simulation", Comput. Mater. Sci., 22(3-4), 180-184. https://doi.org/10.1016/S0927-0256(01)00187-2.
  51. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessel. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  52. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  53. Yildiz, T. and Esen, I. (2023), "Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material", Acta Mech., 234(12), 6407-6437. https://doi.org/10.1007/s00707-023-03722-z.
  54. Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.
  55. Zhang, Y. and Liu, W. (2022), "Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method", Acta Mech., 233, 3157-3174. https://doi.org/10.1007/s00707-022-03273-9.
  56. Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D.W. and Wong, C.P. (2006), "Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays", Carb., 44(2), 253-258. https://doi.org/10.1016/j.carbon.2005.07.037.