DOI QR코드

DOI QR Code

Robust wireless sensor network configuration design for structural health monitoring with optimal information-energy tradeoff

  • Xiao-Han Hao (School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University) ;
  • Sin-Chi Kuok (State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau) ;
  • Ka-Veng Yuen (State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau)
  • 투고 : 2023.04.09
  • 심사 : 2024.08.23
  • 발행 : 2024.06.25

초록

In this paper, a robust wireless sensor network configuration design method is proposed to develop the optimal configuration under the consideration of sensor failure and energy consumption. A malfunctioned sensor in a wireless sensor network may lead to data transmission failure of the entire sensing cluster, inducing severe deterioration in system identification performance. The proposed method determines a wireless sensor network configuration that is robust against sensor failure. By utilizing Bayesian inference, we introduce a robust indicator to evaluate the impact on estimation accuracy of sensor configurations with various malfunctioned sensors. Moreover, a network formation strategy is proposed to optimize the energy efficiency of the wireless sensor network configuration. Therefore, the resultant robust wireless sensor network configuration can operate with the minimum energy consumption while the measurement information of the sensor network with malfunctioned sensors can be guaranteed. The proposed method is illustrated by designing the robust wireless sensor network configurations of a truss model and a bridge model.

키워드

과제정보

This work is funded by the Science and Technology Development Fund, Macau SAR under Research Grant SKL-IOTSC(UM)-2021-2023 and 0094/2021/A2, the Research Committee of University of Macau under Research Grant MYRG2018-00048-AAO and SRG2021-00006-FST, and the Guangdong-Hong Kong-Macau Joint Laboratory Program under Grant 2020B1212030009. These generous supports are gratefully acknowledged.

참고문헌

  1. Al-Turjman, F.M., Hassanein, H.S. and Ibnkahla, M. (2015), "Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring", Ad. Hoc. Netw., 24, 172-185. https://doi.org/10.1016/j.adhoc.2014.08.017
  2. Argyris, C., Chowdhury, S., Zabel, V. and Papadimitriou, C. (2018), "Bayesian optimal sensor placement for crack identification in structures using strain measurements", Struct. Control. Health. Monit., 25(5), e2137. https://doi.org/10.1002/stc.2137
  3. Aswal, N., Sen, S. and Mevel, L. (2022), "Switching Kalman filter for damage estimation in the presence of sensor faults", Mech. Syst. Signal. Process., 175, 109116. https://doi.org/10.1016/j.ymssp.2022.109116
  4. Bhuiyan, M.Z.A. and Cao, J.N. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE Trans. Comput., 64, 382-395. https://doi.org/10.1109/TC.2013.195
  5. Casciati, F. and Fuggini, C. (2011), "Monitoring a steel building using GPS sensors", Smart. Struct. Syst., Int. J., 7(5), 349-363. https://doi.org/10.12989/sss.2011.7.5.349
  6. El-Qawasma, F.A., Elfouly, T.M. and Ahmed, M.H. (2019), "Minimising number of sensors in wireless sensor networks for structure health monitoring systems", IET. Wireless. Sensor Syst., 9(2), 94-101. https://doi.org/10.1049/iet-wss.2018.5031
  7. Elhabyan, R., Shi, W. and St-Hilaire, M. (2019), "Coverage protocols for wireless sensor networks: review and future directions", J. Commun. Netw., 21(1), 45-60. https://doi.org/10.1109/JCN.2019.000005
  8. Elsersy, M., Elfouly, T.M. and Ahmed, M.H. (2016), "Joint optimal placement, routing, and flow assignment in wireless sensor networks for structural health monitoring", IEEE Sensors J., 16(12), 5095-5106. https://doi.org/10.1109/JSEN.2016.2554462
  9. Ercan, T. and Papadimitriou, C. (2021), "Optimal sensor placement for reliable virtual sensing using modal expansion and information theory", Sensors, 21(10), 3400. https://doi.org/10.3390/s21103400
  10. Ercan, T., Sedehi, O., Katafygiotis, L.S. and Papadimitriou, C. (2023), "Information theoretic-based optimal sensor placement for virtual sensing using augmented Kalman filtering", Mech. Syst. Signal. Process., 188, 110031. https://doi.org/10.1016/j.ymssp.2022.110031
  11. Fang, K., Liu, C. and Teng, J. (2018), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health. Monit., 17(2), 266-278. https://doi.org/10.1177/1475921717689967
  12. Fu, T.S., Ghosh, A., Johnson, E.A. and Krishnamachari, B. (2013), "Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks", Struct. Control. Health. Monitor., 20(6), 971-986. https://doi.org/10.1002/stc.1510
  13. Geoffrine, J.M.C. and Geetha, V. (2019), "Energy optimization with higher information quality for SHM application in wireless sensor networks", IEEE Sensors J., 19(9), 3513-3520. https://doi.org/10.1109/JSEN.2019.2892870
  14. Hao, X.H., Yuen, K.V. and Kuok, S.C. (2022a), "Energy-aware versatile wireless sensor network configuration for structural health monitoring", Struct. Control. Health. Monitor., 29(11), e3083. https://doi.org/10.1002/stc.3083
  15. Hao, X.H., Kuok, S.C. and Yuen, K.V. (2022b), "Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff", Smart Struct. Syst., Int. J., 30(6), 583-599. https://doi.org/10.12989/sss.2022.30.6.583
  16. Heinzelman, W.B., Chandrakasan, A.P. and Balakrishnan, H. (2002), "An application-specific protocol architecture for wireless microsensor networks", IEEE Trans. Wirel. Commun., 1, 660-670. https://doi.org/10.1109/TWC.2002.804190
  17. Hu, Q.L., Liu, X., Wu, Q.B., Cao, J.N., Liu, Y. and Tan, Y.S. (2012), "Cluster-based energy-efficient structural health monitoring using wireless sensor networks", In: International Conference on Computer Science & Service System (CSSS), Nanjing, China, August.
  18. Huang, K., Yuen, K.V., Wang, L., Jiang, T.Y. and Dai, L.Z. (2022), "Sensor fault detection, localization, and reconstruction for online structural identification", Struct. Control. Health. Monitor., 29(4), e2925. https://doi.org/10.1002/stc.2925
  19. Huynh, T.C., Nguyen, T.D., Ho, D.D., Dang, N.L. and Kim, J.T. (2020), "Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique", Sensors (Basel), 20(2), 510. https://doi.org/10.3390/s20020510
  20. Jalsan, K.E., Rohan, N.S. and Flouri, K. (2014), "Layout optimization of wireless sensor networks for structural health monitoring", Smart Struct. Syst., Int. J., 14(1), 39-54. https://doi.org/10.12989/sss.2014.14.1.039
  21. Jana, D., Patil, J., Herkal, S., Nagarajaiah, S. and Duenas-Osorio, L. (2022), "CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction", Mech. Syst. Signal Process., 169, 108723. https://doi.org/10.1016/j.ymssp.2021.108723
  22. Jeong, S., Kim, H., Lee, J. and Sim, S.H. (2021), "Automated wireless monitoring system for cable tension forces using deep learning", Struct. Health. Monitor., 20(4), 1805-1821. https://doi.org/10.1177/1475921720935837
  23. Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dyn., 14(2), 251-259. https://doi.org/10.2514/3.20635
  24. Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. Dyn., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53
  25. Kuok, S.C. and Yuen, K.V. (2012), "Structural health monitoring of Canton Tower using Bayesian framework", Smart Struct. Syst., Int. J., 10(4-5), 375-391. https://doi.org/10.12989/sss.2012.10.4_5.375
  26. Lam, H.F. and Adeagbo, M.O. (2022), "An enhanced sequential sensor optimization scheme and its application in the system identification of a rail-sleeper-ballast system", Mech. Syst. Signal Process., 163, 108188. https://doi.org/10.1016/j.ymssp.2021.108188
  27. Lam, H.F., Yang, J.H., Hu, Q. and Ng, T.C. (2018), "Railway ballast damage detection by Markov chain Monte Carlo-based Bayesian method", Struct. Health. Monitor., 17(3), 706-724. https://doi.org/10.1177/1475921717717106
  28. Lei, Y., Yang, N. and Xia, D.D. (2017), "Probabilistic structural damage detection approaches based on structural dynamic response moments", Smart Struct. Syst., Int. J., 20(2), 207-217. https://doi.org/10.12989/sss.2017.20.2.207
  29. Lei, Y., Lu, J.B. and Huang, J.S. (2020), "Synthesize identification and control for smart structures with time-varying parameters under unknown earthquake excitation", Struct. Control Health. Monitor., 27(4), e2512. https://doi.org/10.1002/stc.2512
  30. Lei, Y., Zhang, Y., Mi, J., Liu, W.F. and Liu, L.J. (2021), "Detecting structural damage under unknown seismic excitation by deep convolutional neural network with wavelet-based transmissibility data", Struct. Health. Monitor., 20(4), 1583-1596. https://doi.org/10.1177/1475921720923081
  31. Li, B., Wang, D., Wang, F. and Ni, Y.Q. (2010), "High quality sensor placement for SHM systems: Refocusing on application demands", In: INFOCOM'10, International Conference on IEEE, San Diego, CA, USA, March.
  32. Li, J., Hao, H. and Chen, Z. (2017), "Damage identification and optimal sensor placement for structures under unknown traffic-induced vibrations", J. Aerosp. Eng., 30(2), B4015001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000550
  33. Li, L.L., Liu, G., Zhang, L.L. and Li, Q. (2019), "Sensor fault detection with generalized likelihood ratio and correlation coefficient for bridge SHM", J. Sound. Vib., 442, 445-458. https://doi.org/10.1016/j.jsv.2018.10.062
  34. Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317, 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
  35. Liu, X., Cao, J., Lai, S., Yang, C., Wu, H. and Xu, Y. (2011), "Energy efficient clustering for WSN-based structural health monitoring", Proceedings of 30th IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, April.
  36. Liu, C., Jiang, Z., Wang, F. and Chen, H. (2016), "Energy-efficient heterogeneous wireless sensor deployment with multiple objectives for structural health monitoring", Sensors, 16, 1865. https://doi.org/10.3390/s16111865
  37. Noori, M., Cao, Y., Hou, Z.K. and Sharma, S. (2010), "Application of support vector machine for reliability assessment and structural health monitoring", Int. J. Eng. Under. Uncertain.: Hazard. Assess. Mitig., 2(3-4), 89-98.
  38. Onoufriou, T., Soman, R.N., Votsis, R., Chrysostomou, C. and Kyriakides, M. (2012), "Optimization of wireless sensor locations for SHM based on application demands and networking limitations", In: Management, Resilience and Sustainability: 6th International Conference on Bridge Maintenance, Safety and Management, Stresa, Lake Maggiore, Italy.
  39. Papadimitriou, C. and Lombaert, G. (2012), "The effect of prediction error correlation on optimal sensor placement in structural dynamics", Mech. Syst. Signal Process., 28, 105-127. https://doi.org/10.1016/j.ymssp.2011.05.019
  40. Papadopoulos, M. and Garcia, E. (1998), "Sensor placement methodologies for dynamic testing", AIAA J., 36(2), 256-263. https://doi.org/10.2514/2.7509
  41. Reynier, M. and Abou-Kandil, H. (1999), "Sensors location for updating problems", Mech. Syst. Signal Process., 13(2), 297-314. https://doi.org/10.1006/mssp.1998.1213
  42. Sengupta, S., Das, S. and Nasir, M.D. (2013), "Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity", Eng. Appl. Artif. Intell., 26(1), 405-416. https://doi.org/10.1016/j.engappai.2012.05.018
  43. Shi, Q., Wang, X., Chen, W. and Hu, K. (2020), "Optimal sensor placement method considering the importance of structural performance degradation for the allowable loadings for damage identification", Appl. Math. Model., 86, 384-403. https://doi.org/10.1016/j.apm.2020.05.021
  44. Spencer, B.F. and Cho, S. (2011), "Wireless smart sensor technology for monitoring civil infrastructure: technological developments and full-scale applications", Proceedings of the Advances in Structural Engineering and Mechanics (ASEM'11), Seoul, Korea, September.
  45. Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
  46. Stephan, C. (2012), "Sensor placement for modal identification", Mech. Syst. Signal. Process., 27, 461-470. https://doi.org/10.1016/j.ymssp.2011.07.022
  47. Tan, Y. and Zhang, L.M. (2020), "Computational methodologies for optimal sensor placement in structural health monitoring: a review", Struct. Health Monitor., 19(4), 1287-1308. https://doi.org/10.1177/1475921719877579
  48. Udwadia, F.E., (1994), "Methodology for optimal sensor locations for parameters identification in dynamic systems", J. Eng. Mech., 120(2), 368-390. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
  49. Yao, L., Sethares, W.A. and Kammer, D.C. (1993), "Sensor placement for on-orbit modal identification via a genetic algorithm", AIAA J., 31(10), 1922-1928. https://doi.org/10.2514/3.11868
  50. Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm", Math. Probl. Eng., 2011, 395101. https://doi.org/10.1155/2011/395101
  51. Yi, T.H., Yao, X.J., Qu, C.X. and Li, H.N. (2019), "Clustering number determination for sparse component analysis during output-only modal identification", J. Eng. Mech., 145(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001557
  52. Yuen, K.V. and Kuok, S.C. (2015), "Efficient Bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems", Earthq. Eng. Struct. Dyn., 44(5), 757-774. https://doi.org/10.1002/eqe.2486
  53. Yuen, K.V., Katafygiotis, L.S., Papadimitriou, C. and Mickleborough, M.C. (2001), "Optimal sensor placement methodology for identification with unmeasured excitation", Dyn. Syst. Measur. Contr., 123(4), 677-686. https://doi.org/10.1115/1.1410929
  54. Yuen, K.V., Hao, X.H. and Kuok, S.C. (2022), "Robust sensor placement for structural identification", Struct. Control Health Monitor., 29(1), e2861. https://doi.org/10.1002/stc.2861
  55. Zhang, F.L., Ni, Y.C., Au, S.K. and Lam, H.F. (2016), "Fast Bayesian approach for modal identification using free vibration data, Part I - Most probable value", Mech. Syst. Signal Process., 70-71, 209-220. https://doi.org/10.1016/j.ymssp.2015.05.031
  56. Zhang, F.L., Yang, Y.P., Ye, X.W., Yang, J.H. and Han, B.K. (2019), "Structural modal identification and MCMC-based model updating by a Bayesian approach", Smart Struct. Syst., Int. J., 24(5), 631-639. https://doi.org/10.12989/sss.2019.24.5.631
  57. Zhang, Y.X., Wang, X.Y., Ding, Z.H., Du, Y. and Xia, Y. (2022), "Anomaly detection of sensor faults and extreme events based on support vector data description", Struct. Control Health Monit., 29(10), e3047. https://doi.org/10.1002/stc.3047
  58. Zhang, Z.F., Peng, C., Wang, G.J., Ju, Z.Y. and Ma, L. (2023), "Optimal sensor placement for strain sensing of a beam of high-speed EMU", J. Sound. Vib., 542, 117359. https://doi.org/10.1016/j.jsv.2022.117359
  59. Zhao, Y., Noori, M., Altabey, W.A. and Beheshti-Aval, S.B. (2018), "Mode shape-based damage identification for a reinforced concrete beam using wavelet coefficient differences and multiresolution analysis", Struct. Control Health Monitor., 25(1), e2041. https://doi.org/10.1002/stc.2041
  60. Zhou, G.D. and Yi, T.H. (2013), "Recent developments on wireless sensor networks technology for bridge health monitoring", Math. Probl. Eng., 3, 1-33. https://doi.org/10.1155/2013/947867
  61. Zhou, G.D., Yi, T.H. and Zhang, H. (2015), "Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control Health Monit., 22, 648-666. https://doi.org/10.1002/stc.1707
  62. Zhou, G.D., Xie, M.X., Yi, T.H. and Li, H.N. (2019), "Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm", Adv. Struct. Eng., 22(4), 907-918. https://doi.org/10.1177/1369433218797074
  63. Zhou, G.D., Yi, T.H., Xie, M.X., Li, H.N. and Xu, J.H. (2021), "Optimal wireless sensor placement in structural health monitoring emphasizing information effectiveness and network performance", J. Aerosp. Eng., 34(2), 04020112. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001226
  64. Zhou, X., Zhang, F.L., Goi, Y. and Kim, C.W. (2023), "Bayesian model update for damage detection of a steel plate girder bridge", Smart Struct. Syst., Int. J., 31(1), 29-43. https://doi.org/10.12989/sss.2023.31.1.029