Acknowledgement
The authors gratefully acknowledge financial support from a grant (NRF-2020R1A2C2014797) from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education and National R&D Project for Smart Construction Technology (RS-2020-KA156887) funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport and managed by the Korea Expressway Corporation.
References
- Cabaleiro, M., Riveiro, B., Conde, B. and Sanchez-Rodriguez, A. (2020), "A case study of measurements of deformations due to different loads in pieces less than 1 m from lidar data", Measurement, 151, 107196. https://doi.org/10.1016/j.measurement.2019.107196
- Cha, G., Park, S. and Oh, T. (2019), "A terrestrial LiDAR-based detection of shape deformation for maintenance of bridge structures", J. Constr. Eng. Manag., 145(12), 04019075. https://doi.org/10.1061/(ASCE)CO.1943-7862.00017
- Cha, G., Sim, S. H., Park, S. and Oh, T. (2020), "LiDAR-based bridge displacement estimation using 3D spatial optimization", Sensors, 20(24), 7117. https://doi.org/10.3390/s20247117
- Cho, S., Lee, J. and Sim, S.H. (2018), "Comparative study on displacement measurement sensors for high-speed railroad bridge", Smart Struct. Syst., Int. J., 21(5), 637-652. https://doi.org/10.12989/sss.2018.21.5.637
- Colombani, I.A. and Andrawes, B. (2022), "A study of multi-target image-based displacement measurement approach for field testing of bridges", J. Struct. Integr. Maint., 7(4), 207-216. https://doi.org/10.1080/24705314.2022.2088071
- Di-Stefano, F., Chiappini, S., Gorreja, A., Balestra, M. and Pierdicca, R. (2021), "Mobile 3D scan LiDAR: A literature review", Geomat. Natural Hazards Risk, 12(1), 2387-2429. https://doi.org/10.1080/19475705.2021.1964617
- Durrett, R. (2019), Probability: Theory and Examples, Vol. 49, Cambridge University
- Gharehbaghi, V.R., Kalbkhani, H., Noroozinejad Farsangi, E., Yang, T.Y., Nguyen, A., Mirjalili, S. and Malaga-Chuquitaype, C. (2022), "A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network", J. Struct. Integr. Maint., 7(2), 136-150. https://doi.org/10.1080/24705314.2021.2018840
- Girardeau-Montaut, D., Roux, M., Marc, R. and Thibault, G. (2005), "Change detection on points cloud data acquired with a ground laser scanner. International Archives of Photogrammetry", Remote Sens. Spatial Inform. Sci., 36(3).
- Gordon, S.J. and Lichti, D.D. (2007), "Modeling terrestrial laser scanner data for precise structural deformation measurement", J. Survey. Eng., 133(2), 72-80. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:2(72)
- Graves, W., Aminfar, K. and Lattanzi, D. (2022), "Full-scale highway bridge deformation tracking via photogrammetry and remote sensing", Remote Sensing, 14(12), 2767. https://doi.org/10.3390/rs14122767
- Hough, P.V. (1962), U.S. Patent No. 3,069,654, Washington, DC: U.S. Patent and Trademark Office.
- Hu, F., Zhao, J., Huang, Y. and Li, H. (2021), "Structure-aware 3D reconstruction for cable-stayed bridges: A learning-based method", Comput.-Aided Civil Infrastr. Eng., 36(1), 89-108. https://doi.org/10.1111/mice.12568
- Kim, M.K., Sohn, H. and Chang, C.C. (2015), "Localization and quantification of concrete spalling defects using terrestrial laser scanning", J. Comput. Civil Eng., 29(6), 04014086. https://doi.org/10.1061/(ASCE)CP.1943-5487.00004
- Kim, M.K., Wang, Q., Park, J.W., Cheng, J.C., Sohn, H. and Chang, C.C. (2016), "Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM", Automat. Constr., 72, 102-114. https://doi.org/10.1016/j.autcon.2016.08.035
- Kim, H., Yoon, J. and Sim, S.H. (2020), "Automated bridge component recognition from point clouds using deep learning", Struct. Control Health Monitor., 27(9), e2591. https://doi.org/10.1002/stc.2591
- Kim, H., Lee, S., Ahn, E., Shin, M. and Sim, S.H. (2021a), "Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion", Struct. Health Monitor., 20(2), 500-512. https://doi.org/10.1177/1475921720934758
- Kim, H., Yoon, J., Hong, J. and Sim, S.H. (2021b), "Automated damage localization and quantification in concrete bridges using point cloud-based surface-fitting strategy", J. Comput. Civil Eng., 35(6), 04021028. https://doi.org/10.1061/(ASCE)CP.1943-5487.00009
- Kolappan Geetha, K. and Sim, S.H. (2022), "Fast identification of concrete cracks using 1D deep learning and explainable artificial intelligence-based analysis", Automat. Constr., 143, 104572. https://doi.org/10.1016/j.autcon.2022.104572
- Kolappan Geetha, G., Yang, H.J. and Sim, S.H. (2023), "Fast detection of missing thin propagating cracks during deep-learning-based concrete crack/non-crack classification", Sensors, 23(3), 1419, https://doi.org/10.3390/s23031419
- Lague, D., Brodu, N. and Leroux, J. (2013), "Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ)", ISPRS J. Photogramm. Remote Sens., 82, 10-26. https://doi.org/10.1016/j.isprsjprs.2013.04.009
- Lee, J., Lee, K.C., Cho, S. and Sim, S.H. (2017), "Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges", Sensors, 17(10), 2317. https://doi.org/10.3390/s17102317
- Lee, J., Lee, K.C., Lee, S., Lee, Y.J. and Sim, S.H. (2019), "Long-term displacement measurement of bridges using a LiDAR system", Struct. Control Health Monitor., 26(10), e2428. https://doi.org/10.1002/stc.2428
- Lee, J., Lee, K.C., Jeong, S., Lee, Y.J. and Sim, S.H. (2020a), "Long-term displacement measurement of full-scale bridges using camera ego-motion compensation", Mech. Syst. Signal Process., 140, 106651. https://doi.org/10.1016/j.ymssp.2020.106651
- Lee, S., Lee, J., Park, J.W. and Sim, S.H. (2020b), "Nontarget-based measurement of 6-DOF structural displacement using combined RGB color and depth information", IEEE/ASME Transact. Mechatron., 26(3), 1358-1368. https://doi.org/10.1109/TMECH.2020.3019288
- Lee, J.S., Park, J. and Ryu, Y.M. (2021), "Semantic segmentation of bridge components based on hierarchical point cloud model", Automat. Constr., 130, 103847. https://doi.org/10.1016/j.autcon.2021.103847
- Li, Y., Ma, L. Zhong, Z., Liu, F., Cao, D., Li, J. and Chapman, M.A. (2020), "Deep learning for lidar point clouds in autonomous driving: A review", IEEE Trans. Neural Networks Learn. Syst., 32(8), 3412-3432. https://doi.org/10.48550/arXiv.2005.09830
- Liu, M., Sun, X., Wang, Y., Shao, Y. and You, Y. (2020), "Deformation measurement of highway bridge head based on mobile TLS data", IEEE Access, 8, 85605-85615. https://doi.org/10.1109/ACCESS.2020.2992590
- Lu, R., Brilakis, I. and Middleton, C.R. (2019), "Detection of structural components in point clouds of existing RC bridges", Comput.-Aided Civil Infrastr. Eng., 34(3), 191-212. https://doi.org/10.1111/mice.12407
- Melo, A.G., Pinto, M.F., Honorio, L.M., Dias, F.M. and Masson, J.E. (2020), "3D correspondence and point projection method for structures deformation analysis", IEEE Access, 8, 177823-177836. 10.1109/ACCESS.2020.3027205
- Napolitano, R., Liu, Z., Sun, C. and Glisic, B. (2019), "Combination of image-based documentation and augmented reality for structural health monitoring and building pathology", Front. Built Environ., 5, 50. https://doi.org/10.3389/fbuil.2019.00050
- Ng, H.F., Jargalsaikhan, D., Tsai, H.C. and Lin, C.Y. (2013), "An improved method for image thresholding based on the valley-emphasis method", In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference IEEE, pp. 1-4. https://doi.org/10.1109/APSIPA.2013.6694261
- Nocerino, E., Stathopoulou, E.K., Rigon, S. and Remondino, F. (2020), "Surface reconstruction assessment in photogrammetric applications", Sensors, 20(20), 5863. https://doi.org/10.3390/s20205863
- Oskouie, P., Becerik-Gerber, B. and Soibelman, L. (2016), "Automated measurement of highway retaining wall displacements using terrestrial laser scanners", Automat. Constr., 65, 86-101. https://doi.org/10.1016/j.autcon.2015.12.023
- Otsu, N. (1979), "A threshold selection method from gray-level histograms", IEEE Transact. Syst. Man Cybernet., 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Pan, Y., Dong, Y., Wang, D., Chen, A. and Ye, Z. (2019), "Three-dimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds", Remote Sensing, 11(10), 1204. https://doi.org/10.3390/rs11101204
- Park, H.S., Lee, H.M., Adeli, H. and Lee, I. (2007), "A new approach for health monitoring of structures: terrestrial laser scanning", Comput.-Aided Civil Infrastr. Eng., 22(1), 19-30. https://doi.org/10.1111/j.1467-8667.2006.00466.x
- Royo, S. and Ballesta-Garcia, M. (2019), "An overview of lidar imaging systems for autonomous vehicles", Appl. Sci., 9(19), 4093. https://doi.org/10.3390/app9194093
- Rutzinger, M., Rottensteiner, F. and Pfeifer, N. (2009), "A comparison of evaluation techniques for building extraction from airborne laser scanning", IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, 2(1), 11-20. https://doi.org/10.1109/JSTARS.2009.2012488
- Schnabel, R., Wahl, R. and Klein, R. (2007), "Efficient RANSAC for point-cloud shape detection", In: Computer Graphics Forum, Oxford, UK: Blackwell Publishing Ltd., 26(2), pp. 214-226. https://doi.org/10.1111/j.1467-8659.2007.01016.x
- Sohn, H. and Park, B. (2021), "Laser-based structural health monitoring", In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_86-1
- Soudarissanane, S., Lindenbergh, R., Menenti, M. and Teunissen, P. (2011), "Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points", ISPRS J. Photogramm. Remote Sens., 66(4), 389-399. https://doi.org/10.1016/j.isprsjprs.2011.01.005
- Strang, G. (2022), Introduction to Linear Algebra, Wellesley-Cambridge Press.
- Tan, K. and Cheng, X. (2016a), "Correction of incidence angle and distance effects on TLS intensity data based on reference targets", Remote Sensing, 8(3), 251. https://doi.org/10.3390/rs8030251
- Tan, K. and Cheng, X. (2016b), "Surface reflectance retrieval from the intensity data of a terrestrial laser scanner", JOSA A, 33(4), 771-778. https://doi.org/10.1364/JOSAA.33.000771
- Tan, K., Chen, J., Qian, W., Zhang, W., Shen, F. and Cheng, X. (2019), "Intensity data correction for long-range terrestrial laser scanners: A case study of target differentiation in an intertidal zone", Remote Sensing, 11(3), 331. https://doi.org/10.3390/rs11030331
- Torr, P.H. and Zisserman, A. (2000), "MLESAC: A new robust estimator with application to estimating image geometry", Comput. Vision Image Understand., 78(1), 138-156. https://doi.org/10.1006/cviu.1999.0832
- Truong, M.T.N. and Kim, S (2018), "Automatic image thresholding using Otsu's method and entropy weighting scheme for surface defect detection", Soft Computat., 22, 4197-4203. https://doi.org/10.1007/s00500-017-2709-1
- Truong-Hong, L. and Lindenbergh, R. (2019), "Measuring deformation of bridge structures using laser scanning data", In: 4th Joint International Symposium on Deformation Monitoring (JISDM), p. 7.
- Truong-Hong, L. and Lindenbergh, R. (2022), "Automatically extracting surfaces of reinforced concrete bridges from terrestrial laser scanning point clouds", Automat. Constr., 135, 104127. https://doi.org/10.1016/j.autcon.2021.104127
- Truong-Hong, L., Lindenbergh, R. and Nguyen, T.A. (2021), "Structural assessment using terrestrial laser scanning point clouds", Int. J. Build. Pathol. Adaptat., 40(3), 345-379. https://doi.org/10.1108/IJBPA-04-2021-0051
- Wang, Z. and Menenti, M. (2021), "Challenges and opportunities in Lidar remote sensing", Front. Remote Sens., 2, p. 3. https://doi.org/10.3389/frsen.2021.641723
- Wang, K., Ma, S., Chen, J., Ren, F. and Lu, J. (2020), "Approaches, challenges, and applications for deep visual odometry: Toward complicated and emerging areas", IEEE Transact. Cognit. Develop. Syst., 14(1), 35-49. https://doi.org/10.1109/TCDS.2020.3038898
- Xia, T., Yang, J. and Chen, L. (2022), "Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning", Automat. Constr., 133, 103992. https://doi.org/10.1016/j.autcon.2021.103992
- Xu, Y. and Stilla, U. (2021), "Towards building and civil infrastructure reconstruction from point clouds: A review on data and key techniques", IEEE J. Select. Topics Appl. Earth Observ. Remote Sens., 14, 2857-2885. https://doi.org/10.1109/JSTARS.2021.3060568
- Yan, Y. and Hajjar, J.F. (2021), "Automated extraction of structural elements in steel girder bridges from laser point clouds", Automat. Constr., 125, 103582. https://doi.org/10.1016/j.autcon.2021.103582
- Yang, T., Li, Y., Zhao, C., Yao, D., Chen, G., Sun, L., Krajnik, and T. and Yanet, Z. (2022), "3D ToF LiDAR in mobile robotics: A review", arXiv Prepr, arXiv2202.11025. https://doi.org/10.48550/arXiv.2202.11025
- Ye, C., Acikgoz, S., Pendrigh, S., Riley, E. and DeJong, M.J. (2018), "Mapping deformations and inferring movements of masonry arch bridges using point cloud data", Eng. Struct., 173, 530-545. https://doi.org/10.1016/j.engstruct.2018.06.094
- Ziolkowski, P., Szulwic, J. and Miskiewicz, M. (2018), "Deformation analysis of a composite bridge during proof loading using point cloud processing", Sensors, 18(12), 4332. https://doi.org/10.3390/s18124332